| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmclim2.2 |
|- ( ph -> D e. ( Met ` X ) ) |
| 2 |
|
lmclim2.3 |
|- ( ph -> F : NN --> X ) |
| 3 |
|
geomcau.4 |
|- ( ph -> A e. RR ) |
| 4 |
|
geomcau.5 |
|- ( ph -> B e. RR+ ) |
| 5 |
|
geomcau.6 |
|- ( ph -> B < 1 ) |
| 6 |
|
geomcau.7 |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ ( A x. ( B ^ k ) ) ) |
| 7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 8 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 9 |
4
|
rpcnd |
|- ( ph -> B e. CC ) |
| 10 |
4
|
rpred |
|- ( ph -> B e. RR ) |
| 11 |
4
|
rpge0d |
|- ( ph -> 0 <_ B ) |
| 12 |
10 11
|
absidd |
|- ( ph -> ( abs ` B ) = B ) |
| 13 |
12 5
|
eqbrtrd |
|- ( ph -> ( abs ` B ) < 1 ) |
| 14 |
9 13
|
expcnv |
|- ( ph -> ( m e. NN0 |-> ( B ^ m ) ) ~~> 0 ) |
| 15 |
|
1re |
|- 1 e. RR |
| 16 |
|
resubcl |
|- ( ( 1 e. RR /\ B e. RR ) -> ( 1 - B ) e. RR ) |
| 17 |
15 10 16
|
sylancr |
|- ( ph -> ( 1 - B ) e. RR ) |
| 18 |
|
posdif |
|- ( ( B e. RR /\ 1 e. RR ) -> ( B < 1 <-> 0 < ( 1 - B ) ) ) |
| 19 |
10 15 18
|
sylancl |
|- ( ph -> ( B < 1 <-> 0 < ( 1 - B ) ) ) |
| 20 |
5 19
|
mpbid |
|- ( ph -> 0 < ( 1 - B ) ) |
| 21 |
17 20
|
elrpd |
|- ( ph -> ( 1 - B ) e. RR+ ) |
| 22 |
3 21
|
rerpdivcld |
|- ( ph -> ( A / ( 1 - B ) ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ph -> ( A / ( 1 - B ) ) e. CC ) |
| 24 |
|
nnex |
|- NN e. _V |
| 25 |
24
|
mptex |
|- ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) e. _V |
| 26 |
25
|
a1i |
|- ( ph -> ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) e. _V ) |
| 27 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 29 |
|
oveq2 |
|- ( m = n -> ( B ^ m ) = ( B ^ n ) ) |
| 30 |
|
eqid |
|- ( m e. NN0 |-> ( B ^ m ) ) = ( m e. NN0 |-> ( B ^ m ) ) |
| 31 |
|
ovex |
|- ( B ^ n ) e. _V |
| 32 |
29 30 31
|
fvmpt |
|- ( n e. NN0 -> ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) = ( B ^ n ) ) |
| 33 |
28 32
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) = ( B ^ n ) ) |
| 34 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
| 35 |
|
rpexpcl |
|- ( ( B e. RR+ /\ n e. ZZ ) -> ( B ^ n ) e. RR+ ) |
| 36 |
4 34 35
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( B ^ n ) e. RR+ ) |
| 37 |
36
|
rpcnd |
|- ( ( ph /\ n e. NN ) -> ( B ^ n ) e. CC ) |
| 38 |
33 37
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) e. CC ) |
| 39 |
23
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( A / ( 1 - B ) ) e. CC ) |
| 40 |
37 39
|
mulcomd |
|- ( ( ph /\ n e. NN ) -> ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) = ( ( A / ( 1 - B ) ) x. ( B ^ n ) ) ) |
| 41 |
29
|
oveq1d |
|- ( m = n -> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) = ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) |
| 42 |
|
eqid |
|- ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) = ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) |
| 43 |
|
ovex |
|- ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) e. _V |
| 44 |
41 42 43
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ` n ) = ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ` n ) = ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) |
| 46 |
33
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( ( A / ( 1 - B ) ) x. ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) ) = ( ( A / ( 1 - B ) ) x. ( B ^ n ) ) ) |
| 47 |
40 45 46
|
3eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ` n ) = ( ( A / ( 1 - B ) ) x. ( ( m e. NN0 |-> ( B ^ m ) ) ` n ) ) ) |
| 48 |
7 8 14 23 26 38 47
|
climmulc2 |
|- ( ph -> ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ~~> ( ( A / ( 1 - B ) ) x. 0 ) ) |
| 49 |
23
|
mul01d |
|- ( ph -> ( ( A / ( 1 - B ) ) x. 0 ) = 0 ) |
| 50 |
48 49
|
breqtrd |
|- ( ph -> ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ~~> 0 ) |
| 51 |
36
|
rpred |
|- ( ( ph /\ n e. NN ) -> ( B ^ n ) e. RR ) |
| 52 |
22
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( A / ( 1 - B ) ) e. RR ) |
| 53 |
51 52
|
remulcld |
|- ( ( ph /\ n e. NN ) -> ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) e. RR ) |
| 54 |
53
|
recnd |
|- ( ( ph /\ n e. NN ) -> ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) e. CC ) |
| 55 |
7 8 26 45 54
|
clim0c |
|- ( ph -> ( ( m e. NN |-> ( ( B ^ m ) x. ( A / ( 1 - B ) ) ) ) ~~> 0 <-> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x ) ) |
| 56 |
50 55
|
mpbid |
|- ( ph -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x ) |
| 57 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
| 58 |
57
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> j e. ZZ ) |
| 59 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
| 60 |
|
oveq2 |
|- ( n = j -> ( B ^ n ) = ( B ^ j ) ) |
| 61 |
60
|
fvoveq1d |
|- ( n = j -> ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) = ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) |
| 62 |
61
|
breq1d |
|- ( n = j -> ( ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x <-> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) ) |
| 63 |
62
|
rspcv |
|- ( j e. ( ZZ>= ` j ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) ) |
| 64 |
58 59 63
|
3syl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) ) |
| 65 |
1
|
adantr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> D e. ( Met ` X ) ) |
| 66 |
|
simpl |
|- ( ( j e. NN /\ n e. ( ZZ>= ` j ) ) -> j e. NN ) |
| 67 |
|
ffvelcdm |
|- ( ( F : NN --> X /\ j e. NN ) -> ( F ` j ) e. X ) |
| 68 |
2 66 67
|
syl2an |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( F ` j ) e. X ) |
| 69 |
|
eluznn |
|- ( ( j e. NN /\ n e. ( ZZ>= ` j ) ) -> n e. NN ) |
| 70 |
|
ffvelcdm |
|- ( ( F : NN --> X /\ n e. NN ) -> ( F ` n ) e. X ) |
| 71 |
2 69 70
|
syl2an |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( F ` n ) e. X ) |
| 72 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` j ) e. X /\ ( F ` n ) e. X ) -> ( ( F ` j ) D ( F ` n ) ) e. RR ) |
| 73 |
65 68 71 72
|
syl3anc |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) e. RR ) |
| 74 |
|
eqid |
|- ( ZZ>= ` j ) = ( ZZ>= ` j ) |
| 75 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
| 76 |
75
|
ad2antrl |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> j e. NN0 ) |
| 77 |
76
|
nn0zd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> j e. ZZ ) |
| 78 |
|
oveq2 |
|- ( m = k -> ( B ^ m ) = ( B ^ k ) ) |
| 79 |
78
|
oveq2d |
|- ( m = k -> ( A x. ( B ^ m ) ) = ( A x. ( B ^ k ) ) ) |
| 80 |
|
eqid |
|- ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) = ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) |
| 81 |
|
ovex |
|- ( A x. ( B ^ k ) ) e. _V |
| 82 |
79 80 81
|
fvmpt |
|- ( k e. ( ZZ>= ` j ) -> ( ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ` k ) = ( A x. ( B ^ k ) ) ) |
| 83 |
82
|
adantl |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ` k ) = ( A x. ( B ^ k ) ) ) |
| 84 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> A e. RR ) |
| 85 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> B e. RR ) |
| 86 |
|
eluznn0 |
|- ( ( j e. NN0 /\ k e. ( ZZ>= ` j ) ) -> k e. NN0 ) |
| 87 |
76 86
|
sylan |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. NN0 ) |
| 88 |
85 87
|
reexpcld |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( B ^ k ) e. RR ) |
| 89 |
84 88
|
remulcld |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( A x. ( B ^ k ) ) e. RR ) |
| 90 |
89
|
recnd |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( A x. ( B ^ k ) ) e. CC ) |
| 91 |
3
|
recnd |
|- ( ph -> A e. CC ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> A e. CC ) |
| 93 |
9
|
adantr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> B e. CC ) |
| 94 |
13
|
adantr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` B ) < 1 ) |
| 95 |
|
eqid |
|- ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) = ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) |
| 96 |
|
ovex |
|- ( B ^ k ) e. _V |
| 97 |
78 95 96
|
fvmpt |
|- ( k e. ( ZZ>= ` j ) -> ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) = ( B ^ k ) ) |
| 98 |
97
|
adantl |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) = ( B ^ k ) ) |
| 99 |
93 94 76 98
|
geolim2 |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ) ~~> ( ( B ^ j ) / ( 1 - B ) ) ) |
| 100 |
88
|
recnd |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( B ^ k ) e. CC ) |
| 101 |
98 100
|
eqeltrd |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) e. CC ) |
| 102 |
98
|
oveq2d |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( A x. ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) ) = ( A x. ( B ^ k ) ) ) |
| 103 |
83 102
|
eqtr4d |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ` k ) = ( A x. ( ( m e. ( ZZ>= ` j ) |-> ( B ^ m ) ) ` k ) ) ) |
| 104 |
74 77 92 99 101 103
|
isermulc2 |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) ~~> ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) ) |
| 105 |
4
|
adantr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> B e. RR+ ) |
| 106 |
105 77
|
rpexpcld |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) e. RR+ ) |
| 107 |
106
|
rpcnd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) e. CC ) |
| 108 |
17
|
recnd |
|- ( ph -> ( 1 - B ) e. CC ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( 1 - B ) e. CC ) |
| 110 |
21
|
rpne0d |
|- ( ph -> ( 1 - B ) =/= 0 ) |
| 111 |
110
|
adantr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( 1 - B ) =/= 0 ) |
| 112 |
92 107 109 111
|
div12d |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) = ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) |
| 113 |
104 112
|
breqtrd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) ~~> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) |
| 114 |
74 77 83 90 113
|
isumclim |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) = ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) |
| 115 |
|
seqex |
|- seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) e. _V |
| 116 |
|
ovex |
|- ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) e. _V |
| 117 |
115 116
|
breldm |
|- ( seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) ~~> ( A x. ( ( B ^ j ) / ( 1 - B ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) e. dom ~~> ) |
| 118 |
104 117
|
syl |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> seq j ( + , ( m e. ( ZZ>= ` j ) |-> ( A x. ( B ^ m ) ) ) ) e. dom ~~> ) |
| 119 |
74 77 83 89 118
|
isumrecl |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) e. RR ) |
| 120 |
114 119
|
eqeltrrd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) e. RR ) |
| 121 |
120
|
recnd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) e. CC ) |
| 122 |
121
|
abscld |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) e. RR ) |
| 123 |
|
fzfid |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( j ... ( n - 1 ) ) e. Fin ) |
| 124 |
|
simpll |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ph ) |
| 125 |
|
elfzuz |
|- ( k e. ( j ... ( n - 1 ) ) -> k e. ( ZZ>= ` j ) ) |
| 126 |
|
simprl |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> j e. NN ) |
| 127 |
|
eluznn |
|- ( ( j e. NN /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
| 128 |
126 127
|
sylan |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. NN ) |
| 129 |
125 128
|
sylan2 |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> k e. NN ) |
| 130 |
1
|
adantr |
|- ( ( ph /\ k e. NN ) -> D e. ( Met ` X ) ) |
| 131 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. X ) |
| 132 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 133 |
|
ffvelcdm |
|- ( ( F : NN --> X /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. X ) |
| 134 |
2 132 133
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. X ) |
| 135 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` ( k + 1 ) ) e. X ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) |
| 136 |
130 131 134 135
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) |
| 137 |
124 129 136
|
syl2anc |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) |
| 138 |
123 137
|
fsumrecl |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) e. RR ) |
| 139 |
|
simprr |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> n e. ( ZZ>= ` j ) ) |
| 140 |
|
elfzuz |
|- ( k e. ( j ... n ) -> k e. ( ZZ>= ` j ) ) |
| 141 |
|
simpll |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
| 142 |
141 128 131
|
syl2anc |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X ) |
| 143 |
140 142
|
sylan2 |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... n ) ) -> ( F ` k ) e. X ) |
| 144 |
65 139 143
|
mettrifi |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) ) |
| 145 |
125 89
|
sylan2 |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ( A x. ( B ^ k ) ) e. RR ) |
| 146 |
123 145
|
fsumrecl |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( A x. ( B ^ k ) ) e. RR ) |
| 147 |
124 129 6
|
syl2anc |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( j ... ( n - 1 ) ) ) -> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ ( A x. ( B ^ k ) ) ) |
| 148 |
123 137 145 147
|
fsumle |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ sum_ k e. ( j ... ( n - 1 ) ) ( A x. ( B ^ k ) ) ) |
| 149 |
|
fzssuz |
|- ( j ... ( n - 1 ) ) C_ ( ZZ>= ` j ) |
| 150 |
149
|
a1i |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( j ... ( n - 1 ) ) C_ ( ZZ>= ` j ) ) |
| 151 |
|
0red |
|- ( ( ph /\ k e. NN ) -> 0 e. RR ) |
| 152 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 153 |
|
rpexpcl |
|- ( ( B e. RR+ /\ k e. ZZ ) -> ( B ^ k ) e. RR+ ) |
| 154 |
4 152 153
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( B ^ k ) e. RR+ ) |
| 155 |
136 154
|
rerpdivcld |
|- ( ( ph /\ k e. NN ) -> ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) e. RR ) |
| 156 |
3
|
adantr |
|- ( ( ph /\ k e. NN ) -> A e. RR ) |
| 157 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` ( k + 1 ) ) e. X ) -> 0 <_ ( ( F ` k ) D ( F ` ( k + 1 ) ) ) ) |
| 158 |
130 131 134 157
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( ( F ` k ) D ( F ` ( k + 1 ) ) ) ) |
| 159 |
136 154 158
|
divge0d |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) ) |
| 160 |
136 156 154
|
ledivmul2d |
|- ( ( ph /\ k e. NN ) -> ( ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) <_ A <-> ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ ( A x. ( B ^ k ) ) ) ) |
| 161 |
6 160
|
mpbird |
|- ( ( ph /\ k e. NN ) -> ( ( ( F ` k ) D ( F ` ( k + 1 ) ) ) / ( B ^ k ) ) <_ A ) |
| 162 |
151 155 156 159 161
|
letrd |
|- ( ( ph /\ k e. NN ) -> 0 <_ A ) |
| 163 |
141 128 162
|
syl2anc |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> 0 <_ A ) |
| 164 |
141 128 154
|
syl2anc |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( B ^ k ) e. RR+ ) |
| 165 |
164
|
rpge0d |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> 0 <_ ( B ^ k ) ) |
| 166 |
84 88 163 165
|
mulge0d |
|- ( ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ZZ>= ` j ) ) -> 0 <_ ( A x. ( B ^ k ) ) ) |
| 167 |
74 77 123 150 83 89 166 118
|
isumless |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( A x. ( B ^ k ) ) <_ sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) ) |
| 168 |
138 146 119 148 167
|
letrd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( j ... ( n - 1 ) ) ( ( F ` k ) D ( F ` ( k + 1 ) ) ) <_ sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) ) |
| 169 |
73 138 119 144 168
|
letrd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ sum_ k e. ( ZZ>= ` j ) ( A x. ( B ^ k ) ) ) |
| 170 |
169 114
|
breqtrd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) |
| 171 |
120
|
leabsd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) |
| 172 |
73 120 122 170 171
|
letrd |
|- ( ( ph /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) |
| 173 |
172
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) ) |
| 174 |
73
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( F ` j ) D ( F ` n ) ) e. RR ) |
| 175 |
122
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) e. RR ) |
| 176 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 177 |
176
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> x e. RR ) |
| 178 |
|
lelttr |
|- ( ( ( ( F ` j ) D ( F ` n ) ) e. RR /\ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) e. RR /\ x e. RR ) -> ( ( ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) /\ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) -> ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 179 |
174 175 177 178
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( ( F ` j ) D ( F ` n ) ) <_ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) /\ ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x ) -> ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 180 |
173 179
|
mpand |
|- ( ( ( ph /\ x e. RR+ ) /\ ( j e. NN /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x -> ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 181 |
180
|
anassrs |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) /\ n e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x -> ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 182 |
181
|
ralrimdva |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( ( abs ` ( ( B ^ j ) x. ( A / ( 1 - B ) ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 183 |
64 182
|
syld |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 184 |
183
|
reximdva |
|- ( ( ph /\ x e. RR+ ) -> ( E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 185 |
184
|
ralimdva |
|- ( ph -> ( A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( abs ` ( ( B ^ n ) x. ( A / ( 1 - B ) ) ) ) < x -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 186 |
56 185
|
mpd |
|- ( ph -> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) |
| 187 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 188 |
1 187
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
| 189 |
|
eqidd |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) = ( F ` n ) ) |
| 190 |
|
eqidd |
|- ( ( ph /\ j e. NN ) -> ( F ` j ) = ( F ` j ) ) |
| 191 |
7 188 8 189 190 2
|
iscauf |
|- ( ph -> ( F e. ( Cau ` D ) <-> A. x e. RR+ E. j e. NN A. n e. ( ZZ>= ` j ) ( ( F ` j ) D ( F ` n ) ) < x ) ) |
| 192 |
186 191
|
mpbird |
|- ( ph -> F e. ( Cau ` D ) ) |