| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geomulcvg.1 |  |-  F = ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) | 
						
							| 2 |  | elnn0 |  |-  ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) | 
						
							| 3 |  | simpr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> A = 0 ) | 
						
							| 4 | 3 | oveq1d |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( A ^ k ) = ( 0 ^ k ) ) | 
						
							| 5 |  | 0exp |  |-  ( k e. NN -> ( 0 ^ k ) = 0 ) | 
						
							| 6 | 4 5 | sylan9eq |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( A ^ k ) = 0 ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = ( k x. 0 ) ) | 
						
							| 8 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> k e. CC ) | 
						
							| 10 | 9 | mul01d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. 0 ) = 0 ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = 0 ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k = 0 ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = ( 0 x. ( A ^ k ) ) ) | 
						
							| 14 |  | simplll |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> A e. CC ) | 
						
							| 15 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 16 | 12 15 | eqeltrdi |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k e. NN0 ) | 
						
							| 17 | 14 16 | expcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( A ^ k ) e. CC ) | 
						
							| 18 | 17 | mul02d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( 0 x. ( A ^ k ) ) = 0 ) | 
						
							| 19 | 13 18 | eqtrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = 0 ) | 
						
							| 20 | 11 19 | jaodan |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ ( k e. NN \/ k = 0 ) ) -> ( k x. ( A ^ k ) ) = 0 ) | 
						
							| 21 | 2 20 | sylan2b |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN0 ) -> ( k x. ( A ^ k ) ) = 0 ) | 
						
							| 22 | 21 | mpteq2dva |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) = ( k e. NN0 |-> 0 ) ) | 
						
							| 23 | 1 22 | eqtrid |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( k e. NN0 |-> 0 ) ) | 
						
							| 24 |  | fconstmpt |  |-  ( NN0 X. { 0 } ) = ( k e. NN0 |-> 0 ) | 
						
							| 25 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 26 | 25 | xpeq1i |  |-  ( NN0 X. { 0 } ) = ( ( ZZ>= ` 0 ) X. { 0 } ) | 
						
							| 27 | 24 26 | eqtr3i |  |-  ( k e. NN0 |-> 0 ) = ( ( ZZ>= ` 0 ) X. { 0 } ) | 
						
							| 28 | 23 27 | eqtrdi |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( ( ZZ>= ` 0 ) X. { 0 } ) ) | 
						
							| 29 | 28 | seqeq3d |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) = seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ) | 
						
							| 30 |  | 0z |  |-  0 e. ZZ | 
						
							| 31 |  | serclim0 |  |-  ( 0 e. ZZ -> seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 ) | 
						
							| 32 | 30 31 | ax-mp |  |-  seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 | 
						
							| 33 | 29 32 | eqbrtrdi |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) ~~> 0 ) | 
						
							| 34 |  | seqex |  |-  seq 0 ( + , F ) e. _V | 
						
							| 35 |  | c0ex |  |-  0 e. _V | 
						
							| 36 | 34 35 | breldm |  |-  ( seq 0 ( + , F ) ~~> 0 -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 37 | 33 36 | syl |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 38 |  | 1red |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 e. RR ) | 
						
							| 39 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 40 | 39 | adantr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) | 
						
							| 41 |  | peano2re |  |-  ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) + 1 ) e. RR ) | 
						
							| 43 | 42 | rehalfcld |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) | 
						
							| 45 |  | absrpcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) | 
						
							| 46 | 45 | adantlr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) | 
						
							| 47 | 44 46 | rerpdivcld |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR ) | 
						
							| 48 | 40 | recnd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. CC ) | 
						
							| 49 | 48 | mullidd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) = ( abs ` A ) ) | 
						
							| 50 |  | simpr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) | 
						
							| 51 |  | 1re |  |-  1 e. RR | 
						
							| 52 |  | avglt1 |  |-  ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) | 
						
							| 53 | 40 51 52 | sylancl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) | 
						
							| 54 | 50 53 | mpbid |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) | 
						
							| 55 | 49 54 | eqbrtrd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) | 
						
							| 57 | 38 44 46 | ltmuldivd |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) <-> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) ) | 
						
							| 58 | 56 57 | mpbid |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) | 
						
							| 59 |  | expmulnbnd |  |-  ( ( 1 e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR /\ 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) | 
						
							| 60 | 38 47 58 59 | syl3anc |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) | 
						
							| 61 |  | eluznn0 |  |-  ( ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) -> k e. NN0 ) | 
						
							| 62 |  | nn0cn |  |-  ( k e. NN0 -> k e. CC ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. CC ) | 
						
							| 64 | 63 | mullidd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( 1 x. k ) = k ) | 
						
							| 65 | 43 | recnd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) | 
						
							| 67 | 48 | ad2antrr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. CC ) | 
						
							| 68 | 46 | adantr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR+ ) | 
						
							| 69 | 68 | rpne0d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) =/= 0 ) | 
						
							| 70 |  | simpr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 71 | 66 67 69 70 | expdivd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) = ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) | 
						
							| 72 | 64 71 | breq12d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) | 
						
							| 73 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. RR ) | 
						
							| 75 |  | reexpcl |  |-  ( ( ( ( ( abs ` A ) + 1 ) / 2 ) e. RR /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) | 
						
							| 76 | 44 75 | sylan |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) | 
						
							| 77 | 40 | adantr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) | 
						
							| 78 |  | reexpcl |  |-  ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) | 
						
							| 79 | 77 78 | sylan |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) | 
						
							| 80 | 77 | adantr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR ) | 
						
							| 81 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. ZZ ) | 
						
							| 83 | 68 | rpgt0d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( abs ` A ) ) | 
						
							| 84 |  | expgt0 |  |-  ( ( ( abs ` A ) e. RR /\ k e. ZZ /\ 0 < ( abs ` A ) ) -> 0 < ( ( abs ` A ) ^ k ) ) | 
						
							| 85 | 80 82 83 84 | syl3anc |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( ( abs ` A ) ^ k ) ) | 
						
							| 86 |  | ltmuldiv |  |-  ( ( k e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR /\ ( ( ( abs ` A ) ^ k ) e. RR /\ 0 < ( ( abs ` A ) ^ k ) ) ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) | 
						
							| 87 | 74 76 79 85 86 | syl112anc |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) | 
						
							| 88 | 72 87 | bitr4d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) | 
						
							| 89 | 61 88 | sylan2 |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) | 
						
							| 90 | 89 | anassrs |  |-  ( ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) | 
						
							| 91 | 90 | ralbidva |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) | 
						
							| 92 |  | simprl |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> n e. NN0 ) | 
						
							| 93 |  | oveq2 |  |-  ( k = m -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 94 |  | eqid |  |-  ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) = ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) | 
						
							| 95 |  | ovex |  |-  ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. _V | 
						
							| 96 | 93 94 95 | fvmpt |  |-  ( m e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 98 | 43 | ad2antrr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) | 
						
							| 99 |  | simpr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. NN0 ) | 
						
							| 100 | 98 99 | reexpcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) | 
						
							| 101 | 97 100 | eqeltrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) e. RR ) | 
						
							| 102 |  | id |  |-  ( k = m -> k = m ) | 
						
							| 103 |  | oveq2 |  |-  ( k = m -> ( A ^ k ) = ( A ^ m ) ) | 
						
							| 104 | 102 103 | oveq12d |  |-  ( k = m -> ( k x. ( A ^ k ) ) = ( m x. ( A ^ m ) ) ) | 
						
							| 105 |  | ovex |  |-  ( m x. ( A ^ m ) ) e. _V | 
						
							| 106 | 104 1 105 | fvmpt |  |-  ( m e. NN0 -> ( F ` m ) = ( m x. ( A ^ m ) ) ) | 
						
							| 107 | 106 | adantl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) | 
						
							| 108 |  | nn0cn |  |-  ( m e. NN0 -> m e. CC ) | 
						
							| 109 | 108 | adantl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. CC ) | 
						
							| 110 |  | expcl |  |-  ( ( A e. CC /\ m e. NN0 ) -> ( A ^ m ) e. CC ) | 
						
							| 111 | 110 | ad4ant14 |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( A ^ m ) e. CC ) | 
						
							| 112 | 109 111 | mulcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( m x. ( A ^ m ) ) e. CC ) | 
						
							| 113 | 107 112 | eqeltrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) e. CC ) | 
						
							| 114 |  | 0red |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. RR ) | 
						
							| 115 |  | absge0 |  |-  ( A e. CC -> 0 <_ ( abs ` A ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) | 
						
							| 117 | 114 40 43 116 54 | lelttrd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 < ( ( ( abs ` A ) + 1 ) / 2 ) ) | 
						
							| 118 | 114 43 117 | ltled |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( ( ( abs ` A ) + 1 ) / 2 ) ) | 
						
							| 119 | 43 118 | absidd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) = ( ( ( abs ` A ) + 1 ) / 2 ) ) | 
						
							| 120 |  | avglt2 |  |-  ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) | 
						
							| 121 | 40 51 120 | sylancl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) | 
						
							| 122 | 50 121 | mpbid |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) | 
						
							| 123 | 119 122 | eqbrtrd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) < 1 ) | 
						
							| 124 |  | oveq2 |  |-  ( k = n -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) | 
						
							| 125 |  | ovex |  |-  ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) e. _V | 
						
							| 126 | 124 94 125 | fvmpt |  |-  ( n e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) | 
						
							| 127 | 126 | adantl |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) | 
						
							| 128 | 65 123 127 | geolim |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) ) | 
						
							| 129 |  | seqex |  |-  seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. _V | 
						
							| 130 |  | ovex |  |-  ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) e. _V | 
						
							| 131 | 129 130 | breldm |  |-  ( seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) | 
						
							| 132 | 128 131 | syl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) | 
						
							| 134 |  | 1red |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> 1 e. RR ) | 
						
							| 135 |  | eluznn0 |  |-  ( ( n e. NN0 /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) | 
						
							| 136 | 92 135 | sylan |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) | 
						
							| 137 | 136 | nn0red |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. RR ) | 
						
							| 138 |  | simplll |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> A e. CC ) | 
						
							| 139 | 138 | abscld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` A ) e. RR ) | 
						
							| 140 | 139 136 | reexpcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` A ) ^ m ) e. RR ) | 
						
							| 141 | 137 140 | remulcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) e. RR ) | 
						
							| 142 | 136 100 | syldan |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) | 
						
							| 143 |  | simprr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) | 
						
							| 144 |  | oveq2 |  |-  ( k = m -> ( ( abs ` A ) ^ k ) = ( ( abs ` A ) ^ m ) ) | 
						
							| 145 | 102 144 | oveq12d |  |-  ( k = m -> ( k x. ( ( abs ` A ) ^ k ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) | 
						
							| 146 | 145 93 | breq12d |  |-  ( k = m -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) | 
						
							| 147 | 146 | rspccva |  |-  ( ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 148 | 143 147 | sylan |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 149 | 141 142 148 | ltled |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) <_ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 150 | 136 | nn0cnd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. CC ) | 
						
							| 151 | 138 136 | expcld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( A ^ m ) e. CC ) | 
						
							| 152 | 150 151 | absmuld |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) ) | 
						
							| 153 | 136 | nn0ge0d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> 0 <_ m ) | 
						
							| 154 | 137 153 | absidd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` m ) = m ) | 
						
							| 155 | 138 136 | absexpd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( A ^ m ) ) = ( ( abs ` A ) ^ m ) ) | 
						
							| 156 | 154 155 | oveq12d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) | 
						
							| 157 | 152 156 | eqtrd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) | 
						
							| 158 | 142 | recnd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. CC ) | 
						
							| 159 | 158 | mullidd |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 160 | 149 157 159 | 3brtr4d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) <_ ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) | 
						
							| 161 | 136 106 | syl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) | 
						
							| 162 | 161 | fveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) = ( abs ` ( m x. ( A ^ m ) ) ) ) | 
						
							| 163 | 136 96 | syl |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) | 
						
							| 164 | 163 | oveq2d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) = ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) | 
						
							| 165 | 160 162 164 | 3brtr4d |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) <_ ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) ) | 
						
							| 166 | 25 92 101 113 133 134 165 | cvgcmpce |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 167 | 166 | expr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) | 
						
							| 168 | 167 | adantlr |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) | 
						
							| 169 | 91 168 | sylbid |  |-  ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) | 
						
							| 170 | 169 | rexlimdva |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) | 
						
							| 171 | 60 170 | mpd |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 172 | 37 171 | pm2.61dane |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) e. dom ~~> ) |