Step |
Hyp |
Ref |
Expression |
1 |
|
geomulcvg.1 |
|- F = ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) |
2 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
3 |
|
simpr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> A = 0 ) |
4 |
3
|
oveq1d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( A ^ k ) = ( 0 ^ k ) ) |
5 |
|
0exp |
|- ( k e. NN -> ( 0 ^ k ) = 0 ) |
6 |
4 5
|
sylan9eq |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( A ^ k ) = 0 ) |
7 |
6
|
oveq2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = ( k x. 0 ) ) |
8 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
9 |
8
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> k e. CC ) |
10 |
9
|
mul01d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. 0 ) = 0 ) |
11 |
7 10
|
eqtrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = 0 ) |
12 |
|
simpr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k = 0 ) |
13 |
12
|
oveq1d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = ( 0 x. ( A ^ k ) ) ) |
14 |
|
simplll |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> A e. CC ) |
15 |
|
0nn0 |
|- 0 e. NN0 |
16 |
12 15
|
eqeltrdi |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k e. NN0 ) |
17 |
14 16
|
expcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( A ^ k ) e. CC ) |
18 |
17
|
mul02d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( 0 x. ( A ^ k ) ) = 0 ) |
19 |
13 18
|
eqtrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = 0 ) |
20 |
11 19
|
jaodan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ ( k e. NN \/ k = 0 ) ) -> ( k x. ( A ^ k ) ) = 0 ) |
21 |
2 20
|
sylan2b |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN0 ) -> ( k x. ( A ^ k ) ) = 0 ) |
22 |
21
|
mpteq2dva |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) = ( k e. NN0 |-> 0 ) ) |
23 |
1 22
|
eqtrid |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( k e. NN0 |-> 0 ) ) |
24 |
|
fconstmpt |
|- ( NN0 X. { 0 } ) = ( k e. NN0 |-> 0 ) |
25 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
26 |
25
|
xpeq1i |
|- ( NN0 X. { 0 } ) = ( ( ZZ>= ` 0 ) X. { 0 } ) |
27 |
24 26
|
eqtr3i |
|- ( k e. NN0 |-> 0 ) = ( ( ZZ>= ` 0 ) X. { 0 } ) |
28 |
23 27
|
eqtrdi |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( ( ZZ>= ` 0 ) X. { 0 } ) ) |
29 |
28
|
seqeq3d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) = seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ) |
30 |
|
0z |
|- 0 e. ZZ |
31 |
|
serclim0 |
|- ( 0 e. ZZ -> seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 ) |
32 |
30 31
|
ax-mp |
|- seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 |
33 |
29 32
|
eqbrtrdi |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) ~~> 0 ) |
34 |
|
seqex |
|- seq 0 ( + , F ) e. _V |
35 |
|
c0ex |
|- 0 e. _V |
36 |
34 35
|
breldm |
|- ( seq 0 ( + , F ) ~~> 0 -> seq 0 ( + , F ) e. dom ~~> ) |
37 |
33 36
|
syl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
38 |
|
1red |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 e. RR ) |
39 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
40 |
39
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
41 |
|
peano2re |
|- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
42 |
40 41
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) + 1 ) e. RR ) |
43 |
42
|
rehalfcld |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
44 |
43
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
45 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
46 |
45
|
adantlr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
47 |
44 46
|
rerpdivcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR ) |
48 |
40
|
recnd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. CC ) |
49 |
48
|
mulid2d |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) = ( abs ` A ) ) |
50 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
51 |
|
1re |
|- 1 e. RR |
52 |
|
avglt1 |
|- ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) |
53 |
40 51 52
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) |
54 |
50 53
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
55 |
49 54
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
56 |
55
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
57 |
38 44 46
|
ltmuldivd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) <-> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) ) |
58 |
56 57
|
mpbid |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) |
59 |
|
expmulnbnd |
|- ( ( 1 e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR /\ 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) |
60 |
38 47 58 59
|
syl3anc |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) |
61 |
|
eluznn0 |
|- ( ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) -> k e. NN0 ) |
62 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
63 |
62
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. CC ) |
64 |
63
|
mulid2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( 1 x. k ) = k ) |
65 |
43
|
recnd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) |
66 |
65
|
ad2antrr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) |
67 |
48
|
ad2antrr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. CC ) |
68 |
46
|
adantr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR+ ) |
69 |
68
|
rpne0d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) =/= 0 ) |
70 |
|
simpr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. NN0 ) |
71 |
66 67 69 70
|
expdivd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) = ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) |
72 |
64 71
|
breq12d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
73 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
74 |
73
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. RR ) |
75 |
|
reexpcl |
|- ( ( ( ( ( abs ` A ) + 1 ) / 2 ) e. RR /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) |
76 |
44 75
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) |
77 |
40
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
78 |
|
reexpcl |
|- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
79 |
77 78
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
80 |
77
|
adantr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR ) |
81 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
82 |
81
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. ZZ ) |
83 |
68
|
rpgt0d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( abs ` A ) ) |
84 |
|
expgt0 |
|- ( ( ( abs ` A ) e. RR /\ k e. ZZ /\ 0 < ( abs ` A ) ) -> 0 < ( ( abs ` A ) ^ k ) ) |
85 |
80 82 83 84
|
syl3anc |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( ( abs ` A ) ^ k ) ) |
86 |
|
ltmuldiv |
|- ( ( k e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR /\ ( ( ( abs ` A ) ^ k ) e. RR /\ 0 < ( ( abs ` A ) ^ k ) ) ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
87 |
74 76 79 85 86
|
syl112anc |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
88 |
72 87
|
bitr4d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
89 |
61 88
|
sylan2 |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
90 |
89
|
anassrs |
|- ( ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
91 |
90
|
ralbidva |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
92 |
|
simprl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> n e. NN0 ) |
93 |
|
oveq2 |
|- ( k = m -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
94 |
|
eqid |
|- ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) = ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) |
95 |
|
ovex |
|- ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. _V |
96 |
93 94 95
|
fvmpt |
|- ( m e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
97 |
96
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
98 |
43
|
ad2antrr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
99 |
|
simpr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. NN0 ) |
100 |
98 99
|
reexpcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) |
101 |
97 100
|
eqeltrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) e. RR ) |
102 |
|
id |
|- ( k = m -> k = m ) |
103 |
|
oveq2 |
|- ( k = m -> ( A ^ k ) = ( A ^ m ) ) |
104 |
102 103
|
oveq12d |
|- ( k = m -> ( k x. ( A ^ k ) ) = ( m x. ( A ^ m ) ) ) |
105 |
|
ovex |
|- ( m x. ( A ^ m ) ) e. _V |
106 |
104 1 105
|
fvmpt |
|- ( m e. NN0 -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
107 |
106
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
108 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
109 |
108
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. CC ) |
110 |
|
expcl |
|- ( ( A e. CC /\ m e. NN0 ) -> ( A ^ m ) e. CC ) |
111 |
110
|
ad4ant14 |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( A ^ m ) e. CC ) |
112 |
109 111
|
mulcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( m x. ( A ^ m ) ) e. CC ) |
113 |
107 112
|
eqeltrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
114 |
|
0red |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. RR ) |
115 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
116 |
115
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) |
117 |
114 40 43 116 54
|
lelttrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
118 |
114 43 117
|
ltled |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( ( ( abs ` A ) + 1 ) / 2 ) ) |
119 |
43 118
|
absidd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) = ( ( ( abs ` A ) + 1 ) / 2 ) ) |
120 |
|
avglt2 |
|- ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) |
121 |
40 51 120
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) |
122 |
50 121
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) |
123 |
119 122
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) < 1 ) |
124 |
|
oveq2 |
|- ( k = n -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
125 |
|
ovex |
|- ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) e. _V |
126 |
124 94 125
|
fvmpt |
|- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
127 |
126
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
128 |
65 123 127
|
geolim |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) ) |
129 |
|
seqex |
|- seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. _V |
130 |
|
ovex |
|- ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) e. _V |
131 |
129 130
|
breldm |
|- ( seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
132 |
128 131
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
133 |
132
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
134 |
|
1red |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> 1 e. RR ) |
135 |
|
eluznn0 |
|- ( ( n e. NN0 /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) |
136 |
92 135
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) |
137 |
136
|
nn0red |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. RR ) |
138 |
|
simplll |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> A e. CC ) |
139 |
138
|
abscld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` A ) e. RR ) |
140 |
139 136
|
reexpcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` A ) ^ m ) e. RR ) |
141 |
137 140
|
remulcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) e. RR ) |
142 |
136 100
|
syldan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) |
143 |
|
simprr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) |
144 |
|
oveq2 |
|- ( k = m -> ( ( abs ` A ) ^ k ) = ( ( abs ` A ) ^ m ) ) |
145 |
102 144
|
oveq12d |
|- ( k = m -> ( k x. ( ( abs ` A ) ^ k ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
146 |
145 93
|
breq12d |
|- ( k = m -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
147 |
146
|
rspccva |
|- ( ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
148 |
143 147
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
149 |
141 142 148
|
ltled |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) <_ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
150 |
136
|
nn0cnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. CC ) |
151 |
138 136
|
expcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( A ^ m ) e. CC ) |
152 |
150 151
|
absmuld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) ) |
153 |
136
|
nn0ge0d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> 0 <_ m ) |
154 |
137 153
|
absidd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` m ) = m ) |
155 |
138 136
|
absexpd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( A ^ m ) ) = ( ( abs ` A ) ^ m ) ) |
156 |
154 155
|
oveq12d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
157 |
152 156
|
eqtrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
158 |
142
|
recnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. CC ) |
159 |
158
|
mulid2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
160 |
149 157 159
|
3brtr4d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) <_ ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
161 |
136 106
|
syl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
162 |
161
|
fveq2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) = ( abs ` ( m x. ( A ^ m ) ) ) ) |
163 |
136 96
|
syl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
164 |
163
|
oveq2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) = ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
165 |
160 162 164
|
3brtr4d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) <_ ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) ) |
166 |
25 92 101 113 133 134 165
|
cvgcmpce |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , F ) e. dom ~~> ) |
167 |
166
|
expr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
168 |
167
|
adantlr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
169 |
91 168
|
sylbid |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
170 |
169
|
rexlimdva |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
171 |
60 170
|
mpd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
172 |
37 171
|
pm2.61dane |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) e. dom ~~> ) |