| Step |
Hyp |
Ref |
Expression |
| 1 |
|
georeclim.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
georeclim.2 |
|- ( ph -> 1 < ( abs ` A ) ) |
| 3 |
|
georeclim.3 |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( 1 / A ) ^ k ) ) |
| 4 |
|
0le1 |
|- 0 <_ 1 |
| 5 |
|
0re |
|- 0 e. RR |
| 6 |
|
1re |
|- 1 e. RR |
| 7 |
5 6
|
lenlti |
|- ( 0 <_ 1 <-> -. 1 < 0 ) |
| 8 |
4 7
|
mpbi |
|- -. 1 < 0 |
| 9 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
| 10 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 11 |
9 10
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
| 12 |
11
|
breq2d |
|- ( A = 0 -> ( 1 < ( abs ` A ) <-> 1 < 0 ) ) |
| 13 |
8 12
|
mtbiri |
|- ( A = 0 -> -. 1 < ( abs ` A ) ) |
| 14 |
13
|
necon2ai |
|- ( 1 < ( abs ` A ) -> A =/= 0 ) |
| 15 |
2 14
|
syl |
|- ( ph -> A =/= 0 ) |
| 16 |
1 15
|
reccld |
|- ( ph -> ( 1 / A ) e. CC ) |
| 17 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 18 |
17 1 15
|
absdivd |
|- ( ph -> ( abs ` ( 1 / A ) ) = ( ( abs ` 1 ) / ( abs ` A ) ) ) |
| 19 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 20 |
19
|
oveq1i |
|- ( ( abs ` 1 ) / ( abs ` A ) ) = ( 1 / ( abs ` A ) ) |
| 21 |
18 20
|
eqtrdi |
|- ( ph -> ( abs ` ( 1 / A ) ) = ( 1 / ( abs ` A ) ) ) |
| 22 |
1 15
|
absrpcld |
|- ( ph -> ( abs ` A ) e. RR+ ) |
| 23 |
22
|
recgt1d |
|- ( ph -> ( 1 < ( abs ` A ) <-> ( 1 / ( abs ` A ) ) < 1 ) ) |
| 24 |
2 23
|
mpbid |
|- ( ph -> ( 1 / ( abs ` A ) ) < 1 ) |
| 25 |
21 24
|
eqbrtrd |
|- ( ph -> ( abs ` ( 1 / A ) ) < 1 ) |
| 26 |
16 25 3
|
geolim |
|- ( ph -> seq 0 ( + , F ) ~~> ( 1 / ( 1 - ( 1 / A ) ) ) ) |
| 27 |
1 17 1 15
|
divsubdird |
|- ( ph -> ( ( A - 1 ) / A ) = ( ( A / A ) - ( 1 / A ) ) ) |
| 28 |
1 15
|
dividd |
|- ( ph -> ( A / A ) = 1 ) |
| 29 |
28
|
oveq1d |
|- ( ph -> ( ( A / A ) - ( 1 / A ) ) = ( 1 - ( 1 / A ) ) ) |
| 30 |
27 29
|
eqtrd |
|- ( ph -> ( ( A - 1 ) / A ) = ( 1 - ( 1 / A ) ) ) |
| 31 |
30
|
oveq2d |
|- ( ph -> ( 1 / ( ( A - 1 ) / A ) ) = ( 1 / ( 1 - ( 1 / A ) ) ) ) |
| 32 |
|
ax-1cn |
|- 1 e. CC |
| 33 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
| 34 |
1 32 33
|
sylancl |
|- ( ph -> ( A - 1 ) e. CC ) |
| 35 |
6
|
ltnri |
|- -. 1 < 1 |
| 36 |
|
fveq2 |
|- ( A = 1 -> ( abs ` A ) = ( abs ` 1 ) ) |
| 37 |
36 19
|
eqtrdi |
|- ( A = 1 -> ( abs ` A ) = 1 ) |
| 38 |
37
|
breq2d |
|- ( A = 1 -> ( 1 < ( abs ` A ) <-> 1 < 1 ) ) |
| 39 |
35 38
|
mtbiri |
|- ( A = 1 -> -. 1 < ( abs ` A ) ) |
| 40 |
39
|
necon2ai |
|- ( 1 < ( abs ` A ) -> A =/= 1 ) |
| 41 |
2 40
|
syl |
|- ( ph -> A =/= 1 ) |
| 42 |
|
subeq0 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
| 43 |
1 32 42
|
sylancl |
|- ( ph -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
| 44 |
43
|
necon3bid |
|- ( ph -> ( ( A - 1 ) =/= 0 <-> A =/= 1 ) ) |
| 45 |
41 44
|
mpbird |
|- ( ph -> ( A - 1 ) =/= 0 ) |
| 46 |
34 1 45 15
|
recdivd |
|- ( ph -> ( 1 / ( ( A - 1 ) / A ) ) = ( A / ( A - 1 ) ) ) |
| 47 |
31 46
|
eqtr3d |
|- ( ph -> ( 1 / ( 1 - ( 1 / A ) ) ) = ( A / ( A - 1 ) ) ) |
| 48 |
26 47
|
breqtrd |
|- ( ph -> seq 0 ( + , F ) ~~> ( A / ( A - 1 ) ) ) |