Step |
Hyp |
Ref |
Expression |
1 |
|
geoser.1 |
|- ( ph -> A e. CC ) |
2 |
|
geoser.2 |
|- ( ph -> A =/= 1 ) |
3 |
|
geoser.3 |
|- ( ph -> N e. NN0 ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
4
|
a1i |
|- ( ph -> 0 e. NN0 ) |
6 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
7 |
3 6
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
8 |
1 2 5 7
|
geoserg |
|- ( ph -> sum_ k e. ( 0 ..^ N ) ( A ^ k ) = ( ( ( A ^ 0 ) - ( A ^ N ) ) / ( 1 - A ) ) ) |
9 |
3
|
nn0zd |
|- ( ph -> N e. ZZ ) |
10 |
|
fzoval |
|- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
11 |
9 10
|
syl |
|- ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
12 |
11
|
sumeq1d |
|- ( ph -> sum_ k e. ( 0 ..^ N ) ( A ^ k ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) |
13 |
1
|
exp0d |
|- ( ph -> ( A ^ 0 ) = 1 ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( A ^ 0 ) - ( A ^ N ) ) = ( 1 - ( A ^ N ) ) ) |
15 |
14
|
oveq1d |
|- ( ph -> ( ( ( A ^ 0 ) - ( A ^ N ) ) / ( 1 - A ) ) = ( ( 1 - ( A ^ N ) ) / ( 1 - A ) ) ) |
16 |
8 12 15
|
3eqtr3d |
|- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ N ) ) / ( 1 - A ) ) ) |