| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geoserg.1 |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | geoserg.2 |  |-  ( ph -> A =/= 1 ) | 
						
							| 3 |  | geoserg.3 |  |-  ( ph -> M e. NN0 ) | 
						
							| 4 |  | geoserg.4 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 5 |  | fzofi |  |-  ( M ..^ N ) e. Fin | 
						
							| 6 | 5 | a1i |  |-  ( ph -> ( M ..^ N ) e. Fin ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | subcl |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) | 
						
							| 9 | 7 1 8 | sylancr |  |-  ( ph -> ( 1 - A ) e. CC ) | 
						
							| 10 | 1 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> A e. CC ) | 
						
							| 11 |  | elfzouz |  |-  ( k e. ( M ..^ N ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 12 |  | eluznn0 |  |-  ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) | 
						
							| 13 | 3 11 12 | syl2an |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. NN0 ) | 
						
							| 14 | 10 13 | expcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( A ^ k ) e. CC ) | 
						
							| 15 | 6 9 14 | fsummulc1 |  |-  ( ph -> ( sum_ k e. ( M ..^ N ) ( A ^ k ) x. ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( ( A ^ k ) x. ( 1 - A ) ) ) | 
						
							| 16 | 7 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> 1 e. CC ) | 
						
							| 17 | 14 16 10 | subdid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. ( 1 - A ) ) = ( ( ( A ^ k ) x. 1 ) - ( ( A ^ k ) x. A ) ) ) | 
						
							| 18 | 14 | mulridd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. 1 ) = ( A ^ k ) ) | 
						
							| 19 | 10 13 | expp1d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. A ) = ( A ^ ( k + 1 ) ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( A ^ k ) x. 1 ) - ( ( A ^ k ) x. A ) ) = ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) ) | 
						
							| 22 | 17 21 | eqtrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( A ^ k ) x. ( 1 - A ) ) = ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) ) | 
						
							| 23 | 22 | sumeq2dv |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( ( A ^ k ) x. ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( j = k -> ( A ^ j ) = ( A ^ k ) ) | 
						
							| 25 |  | oveq2 |  |-  ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) | 
						
							| 26 |  | oveq2 |  |-  ( j = M -> ( A ^ j ) = ( A ^ M ) ) | 
						
							| 27 |  | oveq2 |  |-  ( j = N -> ( A ^ j ) = ( A ^ N ) ) | 
						
							| 28 | 1 | adantr |  |-  ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) | 
						
							| 29 |  | elfzuz |  |-  ( j e. ( M ... N ) -> j e. ( ZZ>= ` M ) ) | 
						
							| 30 |  | eluznn0 |  |-  ( ( M e. NN0 /\ j e. ( ZZ>= ` M ) ) -> j e. NN0 ) | 
						
							| 31 | 3 29 30 | syl2an |  |-  ( ( ph /\ j e. ( M ... N ) ) -> j e. NN0 ) | 
						
							| 32 | 28 31 | expcld |  |-  ( ( ph /\ j e. ( M ... N ) ) -> ( A ^ j ) e. CC ) | 
						
							| 33 | 24 25 26 27 4 32 | telfsumo |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( ( A ^ k ) - ( A ^ ( k + 1 ) ) ) = ( ( A ^ M ) - ( A ^ N ) ) ) | 
						
							| 34 | 15 23 33 | 3eqtrrd |  |-  ( ph -> ( ( A ^ M ) - ( A ^ N ) ) = ( sum_ k e. ( M ..^ N ) ( A ^ k ) x. ( 1 - A ) ) ) | 
						
							| 35 | 1 3 | expcld |  |-  ( ph -> ( A ^ M ) e. CC ) | 
						
							| 36 |  | eluznn0 |  |-  ( ( M e. NN0 /\ N e. ( ZZ>= ` M ) ) -> N e. NN0 ) | 
						
							| 37 | 3 4 36 | syl2anc |  |-  ( ph -> N e. NN0 ) | 
						
							| 38 | 1 37 | expcld |  |-  ( ph -> ( A ^ N ) e. CC ) | 
						
							| 39 | 35 38 | subcld |  |-  ( ph -> ( ( A ^ M ) - ( A ^ N ) ) e. CC ) | 
						
							| 40 | 6 14 | fsumcl |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( A ^ k ) e. CC ) | 
						
							| 41 | 2 | necomd |  |-  ( ph -> 1 =/= A ) | 
						
							| 42 |  | subeq0 |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) | 
						
							| 43 | 7 1 42 | sylancr |  |-  ( ph -> ( ( 1 - A ) = 0 <-> 1 = A ) ) | 
						
							| 44 | 43 | necon3bid |  |-  ( ph -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) | 
						
							| 45 | 41 44 | mpbird |  |-  ( ph -> ( 1 - A ) =/= 0 ) | 
						
							| 46 | 39 40 9 45 | divmul3d |  |-  ( ph -> ( ( ( ( A ^ M ) - ( A ^ N ) ) / ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( A ^ k ) <-> ( ( A ^ M ) - ( A ^ N ) ) = ( sum_ k e. ( M ..^ N ) ( A ^ k ) x. ( 1 - A ) ) ) ) | 
						
							| 47 | 34 46 | mpbird |  |-  ( ph -> ( ( ( A ^ M ) - ( A ^ N ) ) / ( 1 - A ) ) = sum_ k e. ( M ..^ N ) ( A ^ k ) ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( A ^ k ) = ( ( ( A ^ M ) - ( A ^ N ) ) / ( 1 - A ) ) ) |