Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl2.1 |
|- X = ( Base ` G ) |
2 |
|
gexcl2.2 |
|- E = ( gEx ` G ) |
3 |
|
simplr |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> E = 1 ) |
4 |
3
|
oveq1d |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( E ( .g ` G ) x ) = ( 1 ( .g ` G ) x ) ) |
5 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
1 2 5 6
|
gexid |
|- ( x e. X -> ( E ( .g ` G ) x ) = ( 0g ` G ) ) |
8 |
7
|
adantl |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( E ( .g ` G ) x ) = ( 0g ` G ) ) |
9 |
1 5
|
mulg1 |
|- ( x e. X -> ( 1 ( .g ` G ) x ) = x ) |
10 |
9
|
adantl |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = x ) |
11 |
4 8 10
|
3eqtr3rd |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> x = ( 0g ` G ) ) |
12 |
|
velsn |
|- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
13 |
11 12
|
sylibr |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> x e. { ( 0g ` G ) } ) |
14 |
13
|
ex |
|- ( ( G e. Mnd /\ E = 1 ) -> ( x e. X -> x e. { ( 0g ` G ) } ) ) |
15 |
14
|
ssrdv |
|- ( ( G e. Mnd /\ E = 1 ) -> X C_ { ( 0g ` G ) } ) |
16 |
1 6
|
mndidcl |
|- ( G e. Mnd -> ( 0g ` G ) e. X ) |
17 |
16
|
adantr |
|- ( ( G e. Mnd /\ E = 1 ) -> ( 0g ` G ) e. X ) |
18 |
17
|
snssd |
|- ( ( G e. Mnd /\ E = 1 ) -> { ( 0g ` G ) } C_ X ) |
19 |
15 18
|
eqssd |
|- ( ( G e. Mnd /\ E = 1 ) -> X = { ( 0g ` G ) } ) |
20 |
|
fvex |
|- ( 0g ` G ) e. _V |
21 |
20
|
ensn1 |
|- { ( 0g ` G ) } ~~ 1o |
22 |
19 21
|
eqbrtrdi |
|- ( ( G e. Mnd /\ E = 1 ) -> X ~~ 1o ) |
23 |
|
simpl |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> G e. Mnd ) |
24 |
|
1nn |
|- 1 e. NN |
25 |
24
|
a1i |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> 1 e. NN ) |
26 |
9
|
adantl |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = x ) |
27 |
|
en1eqsn |
|- ( ( ( 0g ` G ) e. X /\ X ~~ 1o ) -> X = { ( 0g ` G ) } ) |
28 |
16 27
|
sylan |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> X = { ( 0g ` G ) } ) |
29 |
28
|
eleq2d |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> ( x e. X <-> x e. { ( 0g ` G ) } ) ) |
30 |
29
|
biimpa |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> x e. { ( 0g ` G ) } ) |
31 |
30 12
|
sylib |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> x = ( 0g ` G ) ) |
32 |
26 31
|
eqtrd |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) |
33 |
32
|
ralrimiva |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> A. x e. X ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) |
34 |
1 2 5 6
|
gexlem2 |
|- ( ( G e. Mnd /\ 1 e. NN /\ A. x e. X ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) -> E e. ( 1 ... 1 ) ) |
35 |
23 25 33 34
|
syl3anc |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> E e. ( 1 ... 1 ) ) |
36 |
|
elfz1eq |
|- ( E e. ( 1 ... 1 ) -> E = 1 ) |
37 |
35 36
|
syl |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> E = 1 ) |
38 |
22 37
|
impbida |
|- ( G e. Mnd -> ( E = 1 <-> X ~~ 1o ) ) |