| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexcl2.1 |
|- X = ( Base ` G ) |
| 2 |
|
gexcl2.2 |
|- E = ( gEx ` G ) |
| 3 |
|
simplr |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> E = 1 ) |
| 4 |
3
|
oveq1d |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( E ( .g ` G ) x ) = ( 1 ( .g ` G ) x ) ) |
| 5 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 7 |
1 2 5 6
|
gexid |
|- ( x e. X -> ( E ( .g ` G ) x ) = ( 0g ` G ) ) |
| 8 |
7
|
adantl |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( E ( .g ` G ) x ) = ( 0g ` G ) ) |
| 9 |
1 5
|
mulg1 |
|- ( x e. X -> ( 1 ( .g ` G ) x ) = x ) |
| 10 |
9
|
adantl |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = x ) |
| 11 |
4 8 10
|
3eqtr3rd |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> x = ( 0g ` G ) ) |
| 12 |
|
velsn |
|- ( x e. { ( 0g ` G ) } <-> x = ( 0g ` G ) ) |
| 13 |
11 12
|
sylibr |
|- ( ( ( G e. Mnd /\ E = 1 ) /\ x e. X ) -> x e. { ( 0g ` G ) } ) |
| 14 |
13
|
ex |
|- ( ( G e. Mnd /\ E = 1 ) -> ( x e. X -> x e. { ( 0g ` G ) } ) ) |
| 15 |
14
|
ssrdv |
|- ( ( G e. Mnd /\ E = 1 ) -> X C_ { ( 0g ` G ) } ) |
| 16 |
1 6
|
mndidcl |
|- ( G e. Mnd -> ( 0g ` G ) e. X ) |
| 17 |
16
|
adantr |
|- ( ( G e. Mnd /\ E = 1 ) -> ( 0g ` G ) e. X ) |
| 18 |
17
|
snssd |
|- ( ( G e. Mnd /\ E = 1 ) -> { ( 0g ` G ) } C_ X ) |
| 19 |
15 18
|
eqssd |
|- ( ( G e. Mnd /\ E = 1 ) -> X = { ( 0g ` G ) } ) |
| 20 |
|
fvex |
|- ( 0g ` G ) e. _V |
| 21 |
20
|
ensn1 |
|- { ( 0g ` G ) } ~~ 1o |
| 22 |
19 21
|
eqbrtrdi |
|- ( ( G e. Mnd /\ E = 1 ) -> X ~~ 1o ) |
| 23 |
|
simpl |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> G e. Mnd ) |
| 24 |
|
1nn |
|- 1 e. NN |
| 25 |
24
|
a1i |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> 1 e. NN ) |
| 26 |
9
|
adantl |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = x ) |
| 27 |
|
en1eqsn |
|- ( ( ( 0g ` G ) e. X /\ X ~~ 1o ) -> X = { ( 0g ` G ) } ) |
| 28 |
16 27
|
sylan |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> X = { ( 0g ` G ) } ) |
| 29 |
28
|
eleq2d |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> ( x e. X <-> x e. { ( 0g ` G ) } ) ) |
| 30 |
29
|
biimpa |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> x e. { ( 0g ` G ) } ) |
| 31 |
30 12
|
sylib |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> x = ( 0g ` G ) ) |
| 32 |
26 31
|
eqtrd |
|- ( ( ( G e. Mnd /\ X ~~ 1o ) /\ x e. X ) -> ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) |
| 33 |
32
|
ralrimiva |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> A. x e. X ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) |
| 34 |
1 2 5 6
|
gexlem2 |
|- ( ( G e. Mnd /\ 1 e. NN /\ A. x e. X ( 1 ( .g ` G ) x ) = ( 0g ` G ) ) -> E e. ( 1 ... 1 ) ) |
| 35 |
23 25 33 34
|
syl3anc |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> E e. ( 1 ... 1 ) ) |
| 36 |
|
elfz1eq |
|- ( E e. ( 1 ... 1 ) -> E = 1 ) |
| 37 |
35 36
|
syl |
|- ( ( G e. Mnd /\ X ~~ 1o ) -> E = 1 ) |
| 38 |
22 37
|
impbida |
|- ( G e. Mnd -> ( E = 1 <-> X ~~ 1o ) ) |