Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl2.1 |
|- X = ( Base ` G ) |
2 |
|
gexcl2.2 |
|- E = ( gEx ` G ) |
3 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
4 |
1 3
|
oddvds2 |
|- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
5 |
4
|
3expa |
|- ( ( ( G e. Grp /\ X e. Fin ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
6 |
5
|
ralrimiva |
|- ( ( G e. Grp /\ X e. Fin ) -> A. x e. X ( ( od ` G ) ` x ) || ( # ` X ) ) |
7 |
|
hashcl |
|- ( X e. Fin -> ( # ` X ) e. NN0 ) |
8 |
7
|
adantl |
|- ( ( G e. Grp /\ X e. Fin ) -> ( # ` X ) e. NN0 ) |
9 |
8
|
nn0zd |
|- ( ( G e. Grp /\ X e. Fin ) -> ( # ` X ) e. ZZ ) |
10 |
1 2 3
|
gexdvds2 |
|- ( ( G e. Grp /\ ( # ` X ) e. ZZ ) -> ( E || ( # ` X ) <-> A. x e. X ( ( od ` G ) ` x ) || ( # ` X ) ) ) |
11 |
9 10
|
syldan |
|- ( ( G e. Grp /\ X e. Fin ) -> ( E || ( # ` X ) <-> A. x e. X ( ( od ` G ) ` x ) || ( # ` X ) ) ) |
12 |
6 11
|
mpbird |
|- ( ( G e. Grp /\ X e. Fin ) -> E || ( # ` X ) ) |