| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexcl.1 |
|- X = ( Base ` G ) |
| 2 |
|
gexcl.2 |
|- E = ( gEx ` G ) |
| 3 |
|
gexid.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
gexid.4 |
|- .0. = ( 0g ` G ) |
| 5 |
|
simp3 |
|- ( ( G e. Grp /\ A e. X /\ E || N ) -> E || N ) |
| 6 |
|
dvdszrcl |
|- ( E || N -> ( E e. ZZ /\ N e. ZZ ) ) |
| 7 |
|
divides |
|- ( ( E e. ZZ /\ N e. ZZ ) -> ( E || N <-> E. x e. ZZ ( x x. E ) = N ) ) |
| 8 |
6 7
|
biadanii |
|- ( E || N <-> ( ( E e. ZZ /\ N e. ZZ ) /\ E. x e. ZZ ( x x. E ) = N ) ) |
| 9 |
5 8
|
sylib |
|- ( ( G e. Grp /\ A e. X /\ E || N ) -> ( ( E e. ZZ /\ N e. ZZ ) /\ E. x e. ZZ ( x x. E ) = N ) ) |
| 10 |
9
|
simprd |
|- ( ( G e. Grp /\ A e. X /\ E || N ) -> E. x e. ZZ ( x x. E ) = N ) |
| 11 |
|
simpl1 |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> G e. Grp ) |
| 12 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> x e. ZZ ) |
| 13 |
9
|
simplld |
|- ( ( G e. Grp /\ A e. X /\ E || N ) -> E e. ZZ ) |
| 14 |
13
|
adantr |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> E e. ZZ ) |
| 15 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> A e. X ) |
| 16 |
1 3
|
mulgass |
|- ( ( G e. Grp /\ ( x e. ZZ /\ E e. ZZ /\ A e. X ) ) -> ( ( x x. E ) .x. A ) = ( x .x. ( E .x. A ) ) ) |
| 17 |
11 12 14 15 16
|
syl13anc |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( ( x x. E ) .x. A ) = ( x .x. ( E .x. A ) ) ) |
| 18 |
1 2 3 4
|
gexid |
|- ( A e. X -> ( E .x. A ) = .0. ) |
| 19 |
15 18
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( E .x. A ) = .0. ) |
| 20 |
19
|
oveq2d |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( x .x. ( E .x. A ) ) = ( x .x. .0. ) ) |
| 21 |
1 3 4
|
mulgz |
|- ( ( G e. Grp /\ x e. ZZ ) -> ( x .x. .0. ) = .0. ) |
| 22 |
21
|
3ad2antl1 |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( x .x. .0. ) = .0. ) |
| 23 |
17 20 22
|
3eqtrd |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( ( x x. E ) .x. A ) = .0. ) |
| 24 |
|
oveq1 |
|- ( ( x x. E ) = N -> ( ( x x. E ) .x. A ) = ( N .x. A ) ) |
| 25 |
24
|
eqeq1d |
|- ( ( x x. E ) = N -> ( ( ( x x. E ) .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
| 26 |
23 25
|
syl5ibcom |
|- ( ( ( G e. Grp /\ A e. X /\ E || N ) /\ x e. ZZ ) -> ( ( x x. E ) = N -> ( N .x. A ) = .0. ) ) |
| 27 |
26
|
rexlimdva |
|- ( ( G e. Grp /\ A e. X /\ E || N ) -> ( E. x e. ZZ ( x x. E ) = N -> ( N .x. A ) = .0. ) ) |
| 28 |
10 27
|
mpd |
|- ( ( G e. Grp /\ A e. X /\ E || N ) -> ( N .x. A ) = .0. ) |