Step |
Hyp |
Ref |
Expression |
1 |
|
gexex.1 |
|- X = ( Base ` G ) |
2 |
|
gexex.2 |
|- E = ( gEx ` G ) |
3 |
|
gexex.3 |
|- O = ( od ` G ) |
4 |
|
simpll |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> G e. Abel ) |
5 |
|
simplr |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> E e. NN ) |
6 |
|
simprl |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> x e. X ) |
7 |
1 3
|
odf |
|- O : X --> NN0 |
8 |
|
frn |
|- ( O : X --> NN0 -> ran O C_ NN0 ) |
9 |
7 8
|
ax-mp |
|- ran O C_ NN0 |
10 |
|
nn0ssz |
|- NN0 C_ ZZ |
11 |
9 10
|
sstri |
|- ran O C_ ZZ |
12 |
|
nnz |
|- ( E e. NN -> E e. ZZ ) |
13 |
12
|
adantl |
|- ( ( G e. Abel /\ E e. NN ) -> E e. ZZ ) |
14 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
15 |
14
|
adantr |
|- ( ( G e. Abel /\ E e. NN ) -> G e. Grp ) |
16 |
1 2 3
|
gexod |
|- ( ( G e. Grp /\ x e. X ) -> ( O ` x ) || E ) |
17 |
15 16
|
sylan |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) || E ) |
18 |
1 3
|
odcl |
|- ( x e. X -> ( O ` x ) e. NN0 ) |
19 |
18
|
adantl |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) e. NN0 ) |
20 |
19
|
nn0zd |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) e. ZZ ) |
21 |
|
simplr |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> E e. NN ) |
22 |
|
dvdsle |
|- ( ( ( O ` x ) e. ZZ /\ E e. NN ) -> ( ( O ` x ) || E -> ( O ` x ) <_ E ) ) |
23 |
20 21 22
|
syl2anc |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( ( O ` x ) || E -> ( O ` x ) <_ E ) ) |
24 |
17 23
|
mpd |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) <_ E ) |
25 |
24
|
ralrimiva |
|- ( ( G e. Abel /\ E e. NN ) -> A. x e. X ( O ` x ) <_ E ) |
26 |
|
ffn |
|- ( O : X --> NN0 -> O Fn X ) |
27 |
7 26
|
ax-mp |
|- O Fn X |
28 |
|
breq1 |
|- ( y = ( O ` x ) -> ( y <_ E <-> ( O ` x ) <_ E ) ) |
29 |
28
|
ralrn |
|- ( O Fn X -> ( A. y e. ran O y <_ E <-> A. x e. X ( O ` x ) <_ E ) ) |
30 |
27 29
|
ax-mp |
|- ( A. y e. ran O y <_ E <-> A. x e. X ( O ` x ) <_ E ) |
31 |
25 30
|
sylibr |
|- ( ( G e. Abel /\ E e. NN ) -> A. y e. ran O y <_ E ) |
32 |
|
brralrspcev |
|- ( ( E e. ZZ /\ A. y e. ran O y <_ E ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
33 |
13 31 32
|
syl2anc |
|- ( ( G e. Abel /\ E e. NN ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
34 |
33
|
ad2antrr |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
35 |
27
|
a1i |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> O Fn X ) |
36 |
|
fnfvelrn |
|- ( ( O Fn X /\ y e. X ) -> ( O ` y ) e. ran O ) |
37 |
35 36
|
sylan |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) e. ran O ) |
38 |
|
suprzub |
|- ( ( ran O C_ ZZ /\ E. n e. ZZ A. y e. ran O y <_ n /\ ( O ` y ) e. ran O ) -> ( O ` y ) <_ sup ( ran O , RR , < ) ) |
39 |
11 34 37 38
|
mp3an2i |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) <_ sup ( ran O , RR , < ) ) |
40 |
|
simplrr |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` x ) = sup ( ran O , RR , < ) ) |
41 |
39 40
|
breqtrrd |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) <_ ( O ` x ) ) |
42 |
1 2 3 4 5 6 41
|
gexexlem |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> ( O ` x ) = E ) |
43 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
44 |
15 43
|
syl |
|- ( ( G e. Abel /\ E e. NN ) -> X =/= (/) ) |
45 |
7
|
fdmi |
|- dom O = X |
46 |
45
|
eqeq1i |
|- ( dom O = (/) <-> X = (/) ) |
47 |
|
dm0rn0 |
|- ( dom O = (/) <-> ran O = (/) ) |
48 |
46 47
|
bitr3i |
|- ( X = (/) <-> ran O = (/) ) |
49 |
48
|
necon3bii |
|- ( X =/= (/) <-> ran O =/= (/) ) |
50 |
44 49
|
sylib |
|- ( ( G e. Abel /\ E e. NN ) -> ran O =/= (/) ) |
51 |
|
suprzcl2 |
|- ( ( ran O C_ ZZ /\ ran O =/= (/) /\ E. n e. ZZ A. y e. ran O y <_ n ) -> sup ( ran O , RR , < ) e. ran O ) |
52 |
11 50 33 51
|
mp3an2i |
|- ( ( G e. Abel /\ E e. NN ) -> sup ( ran O , RR , < ) e. ran O ) |
53 |
|
fvelrnb |
|- ( O Fn X -> ( sup ( ran O , RR , < ) e. ran O <-> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) ) |
54 |
27 53
|
ax-mp |
|- ( sup ( ran O , RR , < ) e. ran O <-> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) |
55 |
52 54
|
sylib |
|- ( ( G e. Abel /\ E e. NN ) -> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) |
56 |
42 55
|
reximddv |
|- ( ( G e. Abel /\ E e. NN ) -> E. x e. X ( O ` x ) = E ) |