| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexex.1 |
|- X = ( Base ` G ) |
| 2 |
|
gexex.2 |
|- E = ( gEx ` G ) |
| 3 |
|
gexex.3 |
|- O = ( od ` G ) |
| 4 |
|
simpll |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> G e. Abel ) |
| 5 |
|
simplr |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> E e. NN ) |
| 6 |
|
simprl |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> x e. X ) |
| 7 |
1 3
|
odf |
|- O : X --> NN0 |
| 8 |
|
frn |
|- ( O : X --> NN0 -> ran O C_ NN0 ) |
| 9 |
7 8
|
ax-mp |
|- ran O C_ NN0 |
| 10 |
|
nn0ssz |
|- NN0 C_ ZZ |
| 11 |
9 10
|
sstri |
|- ran O C_ ZZ |
| 12 |
|
nnz |
|- ( E e. NN -> E e. ZZ ) |
| 13 |
12
|
adantl |
|- ( ( G e. Abel /\ E e. NN ) -> E e. ZZ ) |
| 14 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 15 |
14
|
adantr |
|- ( ( G e. Abel /\ E e. NN ) -> G e. Grp ) |
| 16 |
1 2 3
|
gexod |
|- ( ( G e. Grp /\ x e. X ) -> ( O ` x ) || E ) |
| 17 |
15 16
|
sylan |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) || E ) |
| 18 |
1 3
|
odcl |
|- ( x e. X -> ( O ` x ) e. NN0 ) |
| 19 |
18
|
adantl |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) e. NN0 ) |
| 20 |
19
|
nn0zd |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) e. ZZ ) |
| 21 |
|
simplr |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> E e. NN ) |
| 22 |
|
dvdsle |
|- ( ( ( O ` x ) e. ZZ /\ E e. NN ) -> ( ( O ` x ) || E -> ( O ` x ) <_ E ) ) |
| 23 |
20 21 22
|
syl2anc |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( ( O ` x ) || E -> ( O ` x ) <_ E ) ) |
| 24 |
17 23
|
mpd |
|- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) <_ E ) |
| 25 |
24
|
ralrimiva |
|- ( ( G e. Abel /\ E e. NN ) -> A. x e. X ( O ` x ) <_ E ) |
| 26 |
|
ffn |
|- ( O : X --> NN0 -> O Fn X ) |
| 27 |
7 26
|
ax-mp |
|- O Fn X |
| 28 |
|
breq1 |
|- ( y = ( O ` x ) -> ( y <_ E <-> ( O ` x ) <_ E ) ) |
| 29 |
28
|
ralrn |
|- ( O Fn X -> ( A. y e. ran O y <_ E <-> A. x e. X ( O ` x ) <_ E ) ) |
| 30 |
27 29
|
ax-mp |
|- ( A. y e. ran O y <_ E <-> A. x e. X ( O ` x ) <_ E ) |
| 31 |
25 30
|
sylibr |
|- ( ( G e. Abel /\ E e. NN ) -> A. y e. ran O y <_ E ) |
| 32 |
|
brralrspcev |
|- ( ( E e. ZZ /\ A. y e. ran O y <_ E ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
| 33 |
13 31 32
|
syl2anc |
|- ( ( G e. Abel /\ E e. NN ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
| 35 |
27
|
a1i |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> O Fn X ) |
| 36 |
|
fnfvelrn |
|- ( ( O Fn X /\ y e. X ) -> ( O ` y ) e. ran O ) |
| 37 |
35 36
|
sylan |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) e. ran O ) |
| 38 |
|
suprzub |
|- ( ( ran O C_ ZZ /\ E. n e. ZZ A. y e. ran O y <_ n /\ ( O ` y ) e. ran O ) -> ( O ` y ) <_ sup ( ran O , RR , < ) ) |
| 39 |
11 34 37 38
|
mp3an2i |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) <_ sup ( ran O , RR , < ) ) |
| 40 |
|
simplrr |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` x ) = sup ( ran O , RR , < ) ) |
| 41 |
39 40
|
breqtrrd |
|- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) <_ ( O ` x ) ) |
| 42 |
1 2 3 4 5 6 41
|
gexexlem |
|- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> ( O ` x ) = E ) |
| 43 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
| 44 |
15 43
|
syl |
|- ( ( G e. Abel /\ E e. NN ) -> X =/= (/) ) |
| 45 |
7
|
fdmi |
|- dom O = X |
| 46 |
45
|
eqeq1i |
|- ( dom O = (/) <-> X = (/) ) |
| 47 |
|
dm0rn0 |
|- ( dom O = (/) <-> ran O = (/) ) |
| 48 |
46 47
|
bitr3i |
|- ( X = (/) <-> ran O = (/) ) |
| 49 |
48
|
necon3bii |
|- ( X =/= (/) <-> ran O =/= (/) ) |
| 50 |
44 49
|
sylib |
|- ( ( G e. Abel /\ E e. NN ) -> ran O =/= (/) ) |
| 51 |
|
suprzcl2 |
|- ( ( ran O C_ ZZ /\ ran O =/= (/) /\ E. n e. ZZ A. y e. ran O y <_ n ) -> sup ( ran O , RR , < ) e. ran O ) |
| 52 |
11 50 33 51
|
mp3an2i |
|- ( ( G e. Abel /\ E e. NN ) -> sup ( ran O , RR , < ) e. ran O ) |
| 53 |
|
fvelrnb |
|- ( O Fn X -> ( sup ( ran O , RR , < ) e. ran O <-> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) ) |
| 54 |
27 53
|
ax-mp |
|- ( sup ( ran O , RR , < ) e. ran O <-> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) |
| 55 |
52 54
|
sylib |
|- ( ( G e. Abel /\ E e. NN ) -> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) |
| 56 |
42 55
|
reximddv |
|- ( ( G e. Abel /\ E e. NN ) -> E. x e. X ( O ` x ) = E ) |