Step |
Hyp |
Ref |
Expression |
1 |
|
gexex.1 |
|- X = ( Base ` G ) |
2 |
|
gexex.2 |
|- E = ( gEx ` G ) |
3 |
|
gexex.3 |
|- O = ( od ` G ) |
4 |
|
gexexlem.1 |
|- ( ph -> G e. Abel ) |
5 |
|
gexexlem.2 |
|- ( ph -> E e. NN ) |
6 |
|
gexexlem.3 |
|- ( ph -> A e. X ) |
7 |
|
gexexlem.4 |
|- ( ( ph /\ y e. X ) -> ( O ` y ) <_ ( O ` A ) ) |
8 |
1 3
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
9 |
6 8
|
syl |
|- ( ph -> ( O ` A ) e. NN0 ) |
10 |
5
|
nnnn0d |
|- ( ph -> E e. NN0 ) |
11 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
12 |
4 11
|
syl |
|- ( ph -> G e. Grp ) |
13 |
1 2 3
|
gexod |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E ) |
14 |
12 6 13
|
syl2anc |
|- ( ph -> ( O ` A ) || E ) |
15 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> G e. Abel ) |
16 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> G e. Grp ) |
17 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
18 |
17
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. NN ) |
19 |
|
simpr |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. Prime ) |
20 |
5
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> E e. NN ) |
21 |
6
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> A e. X ) |
22 |
1 2 3
|
gexnnod |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) e. NN ) |
23 |
16 20 21 22
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) e. NN ) |
24 |
19 23
|
pccld |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` A ) ) e. NN0 ) |
25 |
18 24
|
nnexpcld |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) e. NN ) |
26 |
25
|
nnzd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) e. ZZ ) |
27 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
28 |
1 27
|
mulgcl |
|- ( ( G e. Grp /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. ZZ /\ A e. X ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X ) |
29 |
16 26 21 28
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X ) |
30 |
|
simplr |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> x e. X ) |
31 |
1 2 3
|
gexnnod |
|- ( ( G e. Grp /\ E e. NN /\ x e. X ) -> ( O ` x ) e. NN ) |
32 |
16 20 30 31
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` x ) e. NN ) |
33 |
|
pcdvds |
|- ( ( p e. Prime /\ ( O ` x ) e. NN ) -> ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) ) |
34 |
19 32 33
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) ) |
35 |
19 32
|
pccld |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` x ) ) e. NN0 ) |
36 |
18 35
|
nnexpcld |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. NN ) |
37 |
|
nndivdvds |
|- ( ( ( O ` x ) e. NN /\ ( p ^ ( p pCnt ( O ` x ) ) ) e. NN ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN ) ) |
38 |
32 36 37
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN ) ) |
39 |
34 38
|
mpbid |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN ) |
40 |
39
|
nnzd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ ) |
41 |
1 27
|
mulgcl |
|- ( ( G e. Grp /\ ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ /\ x e. X ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) |
42 |
16 40 30 41
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) |
43 |
1 3 27
|
odmulg |
|- ( ( G e. Grp /\ A e. X /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. ZZ ) -> ( O ` A ) = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
44 |
16 21 26 43
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
45 |
|
pcdvds |
|- ( ( p e. Prime /\ ( O ` A ) e. NN ) -> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) |
46 |
19 23 45
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) |
47 |
|
gcdeq |
|- ( ( ( p ^ ( p pCnt ( O ` A ) ) ) e. NN /\ ( O ` A ) e. NN ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) = ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) ) |
48 |
25 23 47
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) = ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) ) |
49 |
46 48
|
mpbird |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) = ( p ^ ( p pCnt ( O ` A ) ) ) ) |
50 |
49
|
oveq1d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) = ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
51 |
44 50
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) = ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
52 |
51
|
oveq1d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
53 |
1 2 3
|
gexnnod |
|- ( ( G e. Grp /\ E e. NN /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) e. NN ) |
54 |
16 20 29 53
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) e. NN ) |
55 |
54
|
nncnd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) e. CC ) |
56 |
25
|
nncnd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) e. CC ) |
57 |
25
|
nnne0d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) =/= 0 ) |
58 |
55 56 57
|
divcan3d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) = ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) |
59 |
52 58
|
eqtr2d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) = ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
60 |
1 2 3
|
gexnnod |
|- ( ( G e. Grp /\ E e. NN /\ ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. NN ) |
61 |
16 20 42 60
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. NN ) |
62 |
61
|
nncnd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. CC ) |
63 |
36
|
nncnd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. CC ) |
64 |
39
|
nncnd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. CC ) |
65 |
39
|
nnne0d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) =/= 0 ) |
66 |
32
|
nncnd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` x ) e. CC ) |
67 |
36
|
nnne0d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) =/= 0 ) |
68 |
66 63 67
|
divcan1d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) = ( O ` x ) ) |
69 |
1 3 27
|
odmulg |
|- ( ( G e. Grp /\ x e. X /\ ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ ) -> ( O ` x ) = ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
70 |
16 30 40 69
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` x ) = ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
71 |
36
|
nnzd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. ZZ ) |
72 |
|
dvdsmul1 |
|- ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ /\ ( p ^ ( p pCnt ( O ` x ) ) ) e. ZZ ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
73 |
40 71 72
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
74 |
73 68
|
breqtrd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( O ` x ) ) |
75 |
|
gcdeq |
|- ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN /\ ( O ` x ) e. NN ) -> ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) = ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( O ` x ) ) ) |
76 |
39 32 75
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) = ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( O ` x ) ) ) |
77 |
74 76
|
mpbird |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) = ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
78 |
77
|
oveq1d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
79 |
68 70 78
|
3eqtrrd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
80 |
62 63 64 65 79
|
mulcanad |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) = ( p ^ ( p pCnt ( O ` x ) ) ) ) |
81 |
59 80
|
oveq12d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) gcd ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) gcd ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
82 |
|
nndivdvds |
|- ( ( ( O ` A ) e. NN /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. NN ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. NN ) ) |
83 |
23 25 82
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. NN ) ) |
84 |
46 83
|
mpbid |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. NN ) |
85 |
84
|
nnzd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. ZZ ) |
86 |
85 71
|
gcdcomd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) gcd ( p ^ ( p pCnt ( O ` x ) ) ) ) = ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) ) |
87 |
|
pcndvds2 |
|- ( ( p e. Prime /\ ( O ` A ) e. NN ) -> -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
88 |
19 23 87
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
89 |
|
coprm |
|- ( ( p e. Prime /\ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. ZZ ) -> ( -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <-> ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
90 |
19 85 89
|
syl2anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <-> ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
91 |
88 90
|
mpbid |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) |
92 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
93 |
92
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. ZZ ) |
94 |
|
rpexp1i |
|- ( ( p e. ZZ /\ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. ZZ /\ ( p pCnt ( O ` x ) ) e. NN0 ) -> ( ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 -> ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
95 |
93 85 35 94
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 -> ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
96 |
91 95
|
mpd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) |
97 |
81 86 96
|
3eqtrd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) gcd ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = 1 ) |
98 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
99 |
3 1 98
|
odadd |
|- ( ( ( G e. Abel /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X /\ ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) /\ ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) gcd ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = 1 ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
100 |
15 29 42 97 99
|
syl31anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
101 |
59 80
|
oveq12d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
102 |
100 101
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
103 |
|
fveq2 |
|- ( y = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) -> ( O ` y ) = ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
104 |
103
|
breq1d |
|- ( y = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) -> ( ( O ` y ) <_ ( O ` A ) <-> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) <_ ( O ` A ) ) ) |
105 |
7
|
ralrimiva |
|- ( ph -> A. y e. X ( O ` y ) <_ ( O ` A ) ) |
106 |
105
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> A. y e. X ( O ` y ) <_ ( O ` A ) ) |
107 |
1 98
|
grpcl |
|- ( ( G e. Grp /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X /\ ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. X ) |
108 |
16 29 42 107
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. X ) |
109 |
104 106 108
|
rspcdva |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) <_ ( O ` A ) ) |
110 |
102 109
|
eqbrtrrd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) <_ ( O ` A ) ) |
111 |
84
|
nnred |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. RR ) |
112 |
23
|
nnred |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) e. RR ) |
113 |
36
|
nnrpd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ ) |
114 |
111 112 113
|
lemuldivd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) <_ ( O ` A ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
115 |
110 114
|
mpbid |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
116 |
|
nnrp |
|- ( ( p ^ ( p pCnt ( O ` x ) ) ) e. NN -> ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ ) |
117 |
|
nnrp |
|- ( ( p ^ ( p pCnt ( O ` A ) ) ) e. NN -> ( p ^ ( p pCnt ( O ` A ) ) ) e. RR+ ) |
118 |
|
nnrp |
|- ( ( O ` A ) e. NN -> ( O ` A ) e. RR+ ) |
119 |
|
rpregt0 |
|- ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ -> ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
120 |
|
rpregt0 |
|- ( ( p ^ ( p pCnt ( O ` A ) ) ) e. RR+ -> ( ( p ^ ( p pCnt ( O ` A ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
121 |
|
rpregt0 |
|- ( ( O ` A ) e. RR+ -> ( ( O ` A ) e. RR /\ 0 < ( O ` A ) ) ) |
122 |
|
lediv2 |
|- ( ( ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` x ) ) ) ) /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` A ) ) ) ) /\ ( ( O ` A ) e. RR /\ 0 < ( O ` A ) ) ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
123 |
119 120 121 122
|
syl3an |
|- ( ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. RR+ /\ ( O ` A ) e. RR+ ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
124 |
116 117 118 123
|
syl3an |
|- ( ( ( p ^ ( p pCnt ( O ` x ) ) ) e. NN /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. NN /\ ( O ` A ) e. NN ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
125 |
36 25 23 124
|
syl3anc |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
126 |
115 125
|
mpbird |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) ) |
127 |
18
|
nnred |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. RR ) |
128 |
35
|
nn0zd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` x ) ) e. ZZ ) |
129 |
24
|
nn0zd |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` A ) ) e. ZZ ) |
130 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
131 |
130
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. ( ZZ>= ` 2 ) ) |
132 |
|
eluz2gt1 |
|- ( p e. ( ZZ>= ` 2 ) -> 1 < p ) |
133 |
131 132
|
syl |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> 1 < p ) |
134 |
127 128 129 133
|
leexp2d |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) <-> ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
135 |
126 134
|
mpbird |
|- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) |
136 |
135
|
ralrimiva |
|- ( ( ph /\ x e. X ) -> A. p e. Prime ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) |
137 |
1 3
|
odcl |
|- ( x e. X -> ( O ` x ) e. NN0 ) |
138 |
137
|
adantl |
|- ( ( ph /\ x e. X ) -> ( O ` x ) e. NN0 ) |
139 |
138
|
nn0zd |
|- ( ( ph /\ x e. X ) -> ( O ` x ) e. ZZ ) |
140 |
9
|
nn0zd |
|- ( ph -> ( O ` A ) e. ZZ ) |
141 |
140
|
adantr |
|- ( ( ph /\ x e. X ) -> ( O ` A ) e. ZZ ) |
142 |
|
pc2dvds |
|- ( ( ( O ` x ) e. ZZ /\ ( O ` A ) e. ZZ ) -> ( ( O ` x ) || ( O ` A ) <-> A. p e. Prime ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) ) |
143 |
139 141 142
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( ( O ` x ) || ( O ` A ) <-> A. p e. Prime ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) ) |
144 |
136 143
|
mpbird |
|- ( ( ph /\ x e. X ) -> ( O ` x ) || ( O ` A ) ) |
145 |
144
|
ralrimiva |
|- ( ph -> A. x e. X ( O ` x ) || ( O ` A ) ) |
146 |
1 2 3
|
gexdvds2 |
|- ( ( G e. Grp /\ ( O ` A ) e. ZZ ) -> ( E || ( O ` A ) <-> A. x e. X ( O ` x ) || ( O ` A ) ) ) |
147 |
12 140 146
|
syl2anc |
|- ( ph -> ( E || ( O ` A ) <-> A. x e. X ( O ` x ) || ( O ` A ) ) ) |
148 |
145 147
|
mpbird |
|- ( ph -> E || ( O ` A ) ) |
149 |
|
dvdseq |
|- ( ( ( ( O ` A ) e. NN0 /\ E e. NN0 ) /\ ( ( O ` A ) || E /\ E || ( O ` A ) ) ) -> ( O ` A ) = E ) |
150 |
9 10 14 148 149
|
syl22anc |
|- ( ph -> ( O ` A ) = E ) |