Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl.1 |
|- X = ( Base ` G ) |
2 |
|
gexcl.2 |
|- E = ( gEx ` G ) |
3 |
|
gexid.3 |
|- .x. = ( .g ` G ) |
4 |
|
gexid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
oveq1 |
|- ( E = 0 -> ( E .x. A ) = ( 0 .x. A ) ) |
6 |
1 4 3
|
mulg0 |
|- ( A e. X -> ( 0 .x. A ) = .0. ) |
7 |
5 6
|
sylan9eqr |
|- ( ( A e. X /\ E = 0 ) -> ( E .x. A ) = .0. ) |
8 |
7
|
adantrr |
|- ( ( A e. X /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( E .x. A ) = .0. ) |
9 |
|
oveq1 |
|- ( y = E -> ( y .x. x ) = ( E .x. x ) ) |
10 |
9
|
eqeq1d |
|- ( y = E -> ( ( y .x. x ) = .0. <-> ( E .x. x ) = .0. ) ) |
11 |
10
|
ralbidv |
|- ( y = E -> ( A. x e. X ( y .x. x ) = .0. <-> A. x e. X ( E .x. x ) = .0. ) ) |
12 |
11
|
elrab |
|- ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } <-> ( E e. NN /\ A. x e. X ( E .x. x ) = .0. ) ) |
13 |
12
|
simprbi |
|- ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } -> A. x e. X ( E .x. x ) = .0. ) |
14 |
|
oveq2 |
|- ( x = A -> ( E .x. x ) = ( E .x. A ) ) |
15 |
14
|
eqeq1d |
|- ( x = A -> ( ( E .x. x ) = .0. <-> ( E .x. A ) = .0. ) ) |
16 |
15
|
rspcva |
|- ( ( A e. X /\ A. x e. X ( E .x. x ) = .0. ) -> ( E .x. A ) = .0. ) |
17 |
13 16
|
sylan2 |
|- ( ( A e. X /\ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) -> ( E .x. A ) = .0. ) |
18 |
|
elfvex |
|- ( A e. ( Base ` G ) -> G e. _V ) |
19 |
18 1
|
eleq2s |
|- ( A e. X -> G e. _V ) |
20 |
|
eqid |
|- { y e. NN | A. x e. X ( y .x. x ) = .0. } = { y e. NN | A. x e. X ( y .x. x ) = .0. } |
21 |
1 3 4 2 20
|
gexlem1 |
|- ( G e. _V -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
22 |
19 21
|
syl |
|- ( A e. X -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) ) |
23 |
8 17 22
|
mpjaodan |
|- ( A e. X -> ( E .x. A ) = .0. ) |