Step |
Hyp |
Ref |
Expression |
1 |
|
gexod.1 |
|- X = ( Base ` G ) |
2 |
|
gexod.2 |
|- E = ( gEx ` G ) |
3 |
|
gexod.3 |
|- O = ( od ` G ) |
4 |
|
nnne0 |
|- ( E e. NN -> E =/= 0 ) |
5 |
4
|
3ad2ant2 |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> E =/= 0 ) |
6 |
|
nnz |
|- ( E e. NN -> E e. ZZ ) |
7 |
6
|
3ad2ant2 |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> E e. ZZ ) |
8 |
|
0dvds |
|- ( E e. ZZ -> ( 0 || E <-> E = 0 ) ) |
9 |
7 8
|
syl |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( 0 || E <-> E = 0 ) ) |
10 |
9
|
necon3bbid |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( -. 0 || E <-> E =/= 0 ) ) |
11 |
5 10
|
mpbird |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> -. 0 || E ) |
12 |
1 2 3
|
gexod |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E ) |
13 |
12
|
3adant2 |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) || E ) |
14 |
|
breq1 |
|- ( ( O ` A ) = 0 -> ( ( O ` A ) || E <-> 0 || E ) ) |
15 |
13 14
|
syl5ibcom |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( ( O ` A ) = 0 -> 0 || E ) ) |
16 |
11 15
|
mtod |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> -. ( O ` A ) = 0 ) |
17 |
1 3
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
18 |
17
|
3ad2ant3 |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) e. NN0 ) |
19 |
|
elnn0 |
|- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
20 |
18 19
|
sylib |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
21 |
20
|
ord |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( -. ( O ` A ) e. NN -> ( O ` A ) = 0 ) ) |
22 |
16 21
|
mt3d |
|- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) e. NN ) |