Step |
Hyp |
Ref |
Expression |
1 |
|
gexod.1 |
|- X = ( Base ` G ) |
2 |
|
gexod.2 |
|- E = ( gEx ` G ) |
3 |
|
gexod.3 |
|- O = ( od ` G ) |
4 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
6 |
1 2 4 5
|
gexid |
|- ( A e. X -> ( E ( .g ` G ) A ) = ( 0g ` G ) ) |
7 |
6
|
adantl |
|- ( ( G e. Grp /\ A e. X ) -> ( E ( .g ` G ) A ) = ( 0g ` G ) ) |
8 |
1 2
|
gexcl |
|- ( G e. Grp -> E e. NN0 ) |
9 |
8
|
adantr |
|- ( ( G e. Grp /\ A e. X ) -> E e. NN0 ) |
10 |
9
|
nn0zd |
|- ( ( G e. Grp /\ A e. X ) -> E e. ZZ ) |
11 |
1 3 4 5
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ E e. ZZ ) -> ( ( O ` A ) || E <-> ( E ( .g ` G ) A ) = ( 0g ` G ) ) ) |
12 |
10 11
|
mpd3an3 |
|- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) || E <-> ( E ( .g ` G ) A ) = ( 0g ` G ) ) ) |
13 |
7 12
|
mpbird |
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E ) |