Metamath Proof Explorer


Theorem ggen22

Description: gen22 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ggen22.1
|- ( ph -> ( ps -> ch ) )
Assertion ggen22
|- ( ph -> ( ps -> A. x A. y ch ) )

Proof

Step Hyp Ref Expression
1 ggen22.1
 |-  ( ph -> ( ps -> ch ) )
2 1 alrimdv
 |-  ( ph -> ( ps -> A. y ch ) )
3 2 alrimdv
 |-  ( ph -> ( ps -> A. x A. y ch ) )