Metamath Proof Explorer


Theorem ggen31

Description: gen31 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ggen31.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
Assertion ggen31
|- ( ph -> ( ps -> ( ch -> A. x th ) ) )

Proof

Step Hyp Ref Expression
1 ggen31.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 1 imp
 |-  ( ( ph /\ ps ) -> ( ch -> th ) )
3 2 alrimdv
 |-  ( ( ph /\ ps ) -> ( ch -> A. x th ) )
4 3 ex
 |-  ( ph -> ( ps -> ( ch -> A. x th ) ) )