Metamath Proof Explorer


Theorem ghmabl

Description: The image of an abelian group G under a group homomorphism F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x
|- X = ( Base ` G )
ghmabl.y
|- Y = ( Base ` H )
ghmabl.p
|- .+ = ( +g ` G )
ghmabl.q
|- .+^ = ( +g ` H )
ghmabl.f
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
ghmabl.1
|- ( ph -> F : X -onto-> Y )
ghmabl.3
|- ( ph -> G e. Abel )
Assertion ghmabl
|- ( ph -> H e. Abel )

Proof

Step Hyp Ref Expression
1 ghmabl.x
 |-  X = ( Base ` G )
2 ghmabl.y
 |-  Y = ( Base ` H )
3 ghmabl.p
 |-  .+ = ( +g ` G )
4 ghmabl.q
 |-  .+^ = ( +g ` H )
5 ghmabl.f
 |-  ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
6 ghmabl.1
 |-  ( ph -> F : X -onto-> Y )
7 ghmabl.3
 |-  ( ph -> G e. Abel )
8 ablgrp
 |-  ( G e. Abel -> G e. Grp )
9 7 8 syl
 |-  ( ph -> G e. Grp )
10 5 1 2 3 4 6 9 ghmgrp
 |-  ( ph -> H e. Grp )
11 ablcmn
 |-  ( G e. Abel -> G e. CMnd )
12 7 11 syl
 |-  ( ph -> G e. CMnd )
13 1 2 3 4 5 6 12 ghmcmn
 |-  ( ph -> H e. CMnd )
14 isabl
 |-  ( H e. Abel <-> ( H e. Grp /\ H e. CMnd ) )
15 10 13 14 sylanbrc
 |-  ( ph -> H e. Abel )