Description: The image of an abelian group G under a group homomorphism F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmabl.x | |- X = ( Base ` G ) |
|
ghmabl.y | |- Y = ( Base ` H ) |
||
ghmabl.p | |- .+ = ( +g ` G ) |
||
ghmabl.q | |- .+^ = ( +g ` H ) |
||
ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
||
ghmabl.3 | |- ( ph -> G e. Abel ) |
||
Assertion | ghmabl | |- ( ph -> H e. Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmabl.x | |- X = ( Base ` G ) |
|
2 | ghmabl.y | |- Y = ( Base ` H ) |
|
3 | ghmabl.p | |- .+ = ( +g ` G ) |
|
4 | ghmabl.q | |- .+^ = ( +g ` H ) |
|
5 | ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
6 | ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
|
7 | ghmabl.3 | |- ( ph -> G e. Abel ) |
|
8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
9 | 7 8 | syl | |- ( ph -> G e. Grp ) |
10 | 5 1 2 3 4 6 9 | ghmgrp | |- ( ph -> H e. Grp ) |
11 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
12 | 7 11 | syl | |- ( ph -> G e. CMnd ) |
13 | 1 2 3 4 5 6 12 | ghmcmn | |- ( ph -> H e. CMnd ) |
14 | isabl | |- ( H e. Abel <-> ( H e. Grp /\ H e. CMnd ) ) |
|
15 | 10 13 14 | sylanbrc | |- ( ph -> H e. Abel ) |