| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ghmcyg.1 |  |-  C = ( Base ` H ) | 
						
							| 3 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 4 | 1 3 | iscyg |  |-  ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) | 
						
							| 5 | 4 | simprbi |  |-  ( G e. CycGrp -> E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) | 
						
							| 6 |  | eqid |  |-  ( .g ` H ) = ( .g ` H ) | 
						
							| 7 |  | ghmgrp2 |  |-  ( F e. ( G GrpHom H ) -> H e. Grp ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> H e. Grp ) | 
						
							| 9 |  | fof |  |-  ( F : B -onto-> C -> F : B --> C ) | 
						
							| 10 | 9 | ad2antlr |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> F : B --> C ) | 
						
							| 11 |  | simprl |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> x e. B ) | 
						
							| 12 | 10 11 | ffvelcdmd |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> ( F ` x ) e. C ) | 
						
							| 13 |  | simplr |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> F : B -onto-> C ) | 
						
							| 14 |  | foeq2 |  |-  ( ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> ( F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C <-> F : B -onto-> C ) ) | 
						
							| 15 | 14 | ad2antll |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> ( F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C <-> F : B -onto-> C ) ) | 
						
							| 16 | 13 15 | mpbird |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C ) | 
						
							| 17 |  | foelrn |  |-  ( ( F : ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) -onto-> C /\ y e. C ) -> E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) ) | 
						
							| 18 | 16 17 | sylan |  |-  ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) ) | 
						
							| 19 |  | ovex |  |-  ( m ( .g ` G ) x ) e. _V | 
						
							| 20 | 19 | rgenw |  |-  A. m e. ZZ ( m ( .g ` G ) x ) e. _V | 
						
							| 21 |  | oveq1 |  |-  ( n = m -> ( n ( .g ` G ) x ) = ( m ( .g ` G ) x ) ) | 
						
							| 22 | 21 | cbvmptv |  |-  ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( m e. ZZ |-> ( m ( .g ` G ) x ) ) | 
						
							| 23 |  | fveq2 |  |-  ( z = ( m ( .g ` G ) x ) -> ( F ` z ) = ( F ` ( m ( .g ` G ) x ) ) ) | 
						
							| 24 | 23 | eqeq2d |  |-  ( z = ( m ( .g ` G ) x ) -> ( y = ( F ` z ) <-> y = ( F ` ( m ( .g ` G ) x ) ) ) ) | 
						
							| 25 | 22 24 | rexrnmptw |  |-  ( A. m e. ZZ ( m ( .g ` G ) x ) e. _V -> ( E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) <-> E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) ) ) | 
						
							| 26 | 20 25 | ax-mp |  |-  ( E. z e. ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) y = ( F ` z ) <-> E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) ) | 
						
							| 27 | 18 26 | sylib |  |-  ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) ) | 
						
							| 28 |  | simp-4l |  |-  ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> F e. ( G GrpHom H ) ) | 
						
							| 29 |  | simpr |  |-  ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> m e. ZZ ) | 
						
							| 30 | 11 | ad2antrr |  |-  ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> x e. B ) | 
						
							| 31 | 1 3 6 | ghmmulg |  |-  ( ( F e. ( G GrpHom H ) /\ m e. ZZ /\ x e. B ) -> ( F ` ( m ( .g ` G ) x ) ) = ( m ( .g ` H ) ( F ` x ) ) ) | 
						
							| 32 | 28 29 30 31 | syl3anc |  |-  ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> ( F ` ( m ( .g ` G ) x ) ) = ( m ( .g ` H ) ( F ` x ) ) ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) /\ m e. ZZ ) -> ( y = ( F ` ( m ( .g ` G ) x ) ) <-> y = ( m ( .g ` H ) ( F ` x ) ) ) ) | 
						
							| 34 | 33 | rexbidva |  |-  ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> ( E. m e. ZZ y = ( F ` ( m ( .g ` G ) x ) ) <-> E. m e. ZZ y = ( m ( .g ` H ) ( F ` x ) ) ) ) | 
						
							| 35 | 27 34 | mpbid |  |-  ( ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) /\ y e. C ) -> E. m e. ZZ y = ( m ( .g ` H ) ( F ` x ) ) ) | 
						
							| 36 | 2 6 8 12 35 | iscygd |  |-  ( ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) /\ ( x e. B /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) -> H e. CycGrp ) | 
						
							| 37 | 36 | rexlimdvaa |  |-  ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) -> ( E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> H e. CycGrp ) ) | 
						
							| 38 | 5 37 | syl5 |  |-  ( ( F e. ( G GrpHom H ) /\ F : B -onto-> C ) -> ( G e. CycGrp -> H e. CycGrp ) ) |