Step |
Hyp |
Ref |
Expression |
1 |
|
ghmeqker.b |
|- B = ( Base ` S ) |
2 |
|
ghmeqker.z |
|- .0. = ( 0g ` T ) |
3 |
|
ghmeqker.k |
|- K = ( `' F " { .0. } ) |
4 |
|
ghmeqker.m |
|- .- = ( -g ` S ) |
5 |
2
|
sneqi |
|- { .0. } = { ( 0g ` T ) } |
6 |
5
|
imaeq2i |
|- ( `' F " { .0. } ) = ( `' F " { ( 0g ` T ) } ) |
7 |
3 6
|
eqtri |
|- K = ( `' F " { ( 0g ` T ) } ) |
8 |
7
|
eleq2i |
|- ( ( U .- V ) e. K <-> ( U .- V ) e. ( `' F " { ( 0g ` T ) } ) ) |
9 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
10 |
1 9
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : B --> ( Base ` T ) ) |
11 |
10
|
ffnd |
|- ( F e. ( S GrpHom T ) -> F Fn B ) |
12 |
11
|
3ad2ant1 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> F Fn B ) |
13 |
|
fniniseg |
|- ( F Fn B -> ( ( U .- V ) e. ( `' F " { ( 0g ` T ) } ) <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( U .- V ) e. ( `' F " { ( 0g ` T ) } ) <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
15 |
8 14
|
syl5bb |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( U .- V ) e. K <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
16 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
17 |
1 4
|
grpsubcl |
|- ( ( S e. Grp /\ U e. B /\ V e. B ) -> ( U .- V ) e. B ) |
18 |
16 17
|
syl3an1 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( U .- V ) e. B ) |
19 |
18
|
biantrurd |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` ( U .- V ) ) = ( 0g ` T ) <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
20 |
|
eqid |
|- ( -g ` T ) = ( -g ` T ) |
21 |
1 4 20
|
ghmsub |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( ( F ` U ) ( -g ` T ) ( F ` V ) ) ) |
22 |
21
|
eqeq1d |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` ( U .- V ) ) = ( 0g ` T ) <-> ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) ) ) |
23 |
19 22
|
bitr3d |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) <-> ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) ) ) |
24 |
|
ghmgrp2 |
|- ( F e. ( S GrpHom T ) -> T e. Grp ) |
25 |
24
|
3ad2ant1 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> T e. Grp ) |
26 |
10
|
3ad2ant1 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> F : B --> ( Base ` T ) ) |
27 |
|
simp2 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> U e. B ) |
28 |
26 27
|
ffvelrnd |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` U ) e. ( Base ` T ) ) |
29 |
|
simp3 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> V e. B ) |
30 |
26 29
|
ffvelrnd |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` V ) e. ( Base ` T ) ) |
31 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
32 |
9 31 20
|
grpsubeq0 |
|- ( ( T e. Grp /\ ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) -> ( ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) <-> ( F ` U ) = ( F ` V ) ) ) |
33 |
25 28 30 32
|
syl3anc |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) <-> ( F ` U ) = ( F ` V ) ) ) |
34 |
15 23 33
|
3bitrrd |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) = ( F ` V ) <-> ( U .- V ) e. K ) ) |