| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmmhm |  |-  ( F e. ( S GrpHom T ) -> F e. ( S MndHom T ) ) | 
						
							| 2 |  | ghmmhm |  |-  ( G e. ( S GrpHom T ) -> G e. ( S MndHom T ) ) | 
						
							| 3 |  | mhmeql |  |-  ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) | 
						
							| 5 |  | fveq2 |  |-  ( y = ( ( invg ` S ) ` x ) -> ( F ` y ) = ( F ` ( ( invg ` S ) ` x ) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( y = ( ( invg ` S ) ` x ) -> ( G ` y ) = ( G ` ( ( invg ` S ) ` x ) ) ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( y = ( ( invg ` S ) ` x ) -> ( ( F ` y ) = ( G ` y ) <-> ( F ` ( ( invg ` S ) ` x ) ) = ( G ` ( ( invg ` S ) ` x ) ) ) ) | 
						
							| 8 |  | ghmgrp1 |  |-  ( F e. ( S GrpHom T ) -> S e. Grp ) | 
						
							| 9 | 8 | adantr |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> S e. Grp ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> S e. Grp ) | 
						
							| 11 |  | simprl |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> x e. ( Base ` S ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 13 |  | eqid |  |-  ( invg ` S ) = ( invg ` S ) | 
						
							| 14 | 12 13 | grpinvcl |  |-  ( ( S e. Grp /\ x e. ( Base ` S ) ) -> ( ( invg ` S ) ` x ) e. ( Base ` S ) ) | 
						
							| 15 | 10 11 14 | syl2anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` S ) ` x ) e. ( Base ` S ) ) | 
						
							| 16 |  | simprr |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` x ) = ( G ` x ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` T ) ` ( F ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) | 
						
							| 18 |  | eqid |  |-  ( invg ` T ) = ( invg ` T ) | 
						
							| 19 | 12 13 18 | ghminv |  |-  ( ( F e. ( S GrpHom T ) /\ x e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( F ` x ) ) ) | 
						
							| 20 | 19 | ad2ant2r |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( F ` x ) ) ) | 
						
							| 21 | 12 13 18 | ghminv |  |-  ( ( G e. ( S GrpHom T ) /\ x e. ( Base ` S ) ) -> ( G ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) | 
						
							| 22 | 21 | ad2ant2lr |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( G ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) | 
						
							| 23 | 17 20 22 | 3eqtr4d |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( G ` ( ( invg ` S ) ` x ) ) ) | 
						
							| 24 | 7 15 23 | elrabd |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) | 
						
							| 25 | 24 | expr |  |-  ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ x e. ( Base ` S ) ) -> ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) | 
						
							| 26 | 25 | ralrimiva |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) | 
						
							| 27 |  | fveq2 |  |-  ( y = x -> ( F ` y ) = ( F ` x ) ) | 
						
							| 28 |  | fveq2 |  |-  ( y = x -> ( G ` y ) = ( G ` x ) ) | 
						
							| 29 | 27 28 | eqeq12d |  |-  ( y = x -> ( ( F ` y ) = ( G ` y ) <-> ( F ` x ) = ( G ` x ) ) ) | 
						
							| 30 | 29 | ralrab |  |-  ( A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } <-> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) | 
						
							| 31 | 26 30 | sylibr |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) | 
						
							| 32 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 33 | 12 32 | ghmf |  |-  ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 35 | 34 | ffnd |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> F Fn ( Base ` S ) ) | 
						
							| 36 | 12 32 | ghmf |  |-  ( G e. ( S GrpHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 38 | 37 | ffnd |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> G Fn ( Base ` S ) ) | 
						
							| 39 |  | fndmin |  |-  ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) | 
						
							| 40 | 35 38 39 | syl2anc |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) | 
						
							| 41 |  | eleq2 |  |-  ( dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } -> ( ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) | 
						
							| 42 | 41 | raleqbi1dv |  |-  ( dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } -> ( A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) | 
						
							| 43 | 40 42 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) | 
						
							| 44 | 31 43 | mpbird |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) | 
						
							| 45 | 13 | issubg3 |  |-  ( S e. Grp -> ( dom ( F i^i G ) e. ( SubGrp ` S ) <-> ( dom ( F i^i G ) e. ( SubMnd ` S ) /\ A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) ) ) | 
						
							| 46 | 9 45 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( dom ( F i^i G ) e. ( SubGrp ` S ) <-> ( dom ( F i^i G ) e. ( SubMnd ` S ) /\ A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) ) ) | 
						
							| 47 | 4 44 46 | mpbir2and |  |-  ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |