Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmf.x | |- X = ( Base ` S ) |
|
ghmf.y | |- Y = ( Base ` T ) |
||
Assertion | ghmf | |- ( F e. ( S GrpHom T ) -> F : X --> Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmf.x | |- X = ( Base ` S ) |
|
2 | ghmf.y | |- Y = ( Base ` T ) |
|
3 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
4 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
5 | 1 2 3 4 | isghm | |- ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : X --> Y /\ A. y e. X A. x e. X ( F ` ( y ( +g ` S ) x ) ) = ( ( F ` y ) ( +g ` T ) ( F ` x ) ) ) ) ) |
6 | 5 | simprbi | |- ( F e. ( S GrpHom T ) -> ( F : X --> Y /\ A. y e. X A. x e. X ( F ` ( y ( +g ` S ) x ) ) = ( ( F ` y ) ( +g ` T ) ( F ` x ) ) ) ) |
7 | 6 | simpld | |- ( F e. ( S GrpHom T ) -> F : X --> Y ) |