Metamath Proof Explorer


Theorem ghmf

Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmf.x
|- X = ( Base ` S )
ghmf.y
|- Y = ( Base ` T )
Assertion ghmf
|- ( F e. ( S GrpHom T ) -> F : X --> Y )

Proof

Step Hyp Ref Expression
1 ghmf.x
 |-  X = ( Base ` S )
2 ghmf.y
 |-  Y = ( Base ` T )
3 eqid
 |-  ( +g ` S ) = ( +g ` S )
4 eqid
 |-  ( +g ` T ) = ( +g ` T )
5 1 2 3 4 isghm
 |-  ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : X --> Y /\ A. y e. X A. x e. X ( F ` ( y ( +g ` S ) x ) ) = ( ( F ` y ) ( +g ` T ) ( F ` x ) ) ) ) )
6 5 simprbi
 |-  ( F e. ( S GrpHom T ) -> ( F : X --> Y /\ A. y e. X A. x e. X ( F ` ( y ( +g ` S ) x ) ) = ( ( F ` y ) ( +g ` T ) ( F ` x ) ) ) )
7 6 simpld
 |-  ( F e. ( S GrpHom T ) -> F : X --> Y )