| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ghm0to0.a |  |-  A = ( Base ` R ) | 
						
							| 2 |  | f1ghm0to0.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | f1ghm0to0.n |  |-  N = ( 0g ` R ) | 
						
							| 4 |  | f1ghm0to0.0 |  |-  .0. = ( 0g ` S ) | 
						
							| 5 | 1 2 3 4 | f1ghm0to0 |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) | 
						
							| 6 | 5 | 3expa |  |-  ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) | 
						
							| 7 | 6 | biimpd |  |-  ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. -> x = N ) ) | 
						
							| 8 | 7 | ralrimiva |  |-  ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) | 
						
							| 9 | 1 2 | ghmf |  |-  ( F e. ( R GrpHom S ) -> F : A --> B ) | 
						
							| 10 | 9 | adantr |  |-  ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> F : A --> B ) | 
						
							| 11 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 12 |  | eqid |  |-  ( -g ` S ) = ( -g ` S ) | 
						
							| 13 | 1 11 12 | ghmsub |  |-  ( ( F e. ( R GrpHom S ) /\ y e. A /\ z e. A ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) | 
						
							| 14 | 13 | 3expb |  |-  ( ( F e. ( R GrpHom S ) /\ ( y e. A /\ z e. A ) ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) | 
						
							| 15 | 14 | adantlr |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` ( y ( -g ` R ) z ) ) = .0. <-> ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. ) ) | 
						
							| 17 |  | fveqeq2 |  |-  ( x = ( y ( -g ` R ) z ) -> ( ( F ` x ) = .0. <-> ( F ` ( y ( -g ` R ) z ) ) = .0. ) ) | 
						
							| 18 |  | eqeq1 |  |-  ( x = ( y ( -g ` R ) z ) -> ( x = N <-> ( y ( -g ` R ) z ) = N ) ) | 
						
							| 19 | 17 18 | imbi12d |  |-  ( x = ( y ( -g ` R ) z ) -> ( ( ( F ` x ) = .0. -> x = N ) <-> ( ( F ` ( y ( -g ` R ) z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) ) | 
						
							| 20 |  | simplr |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) | 
						
							| 21 |  | ghmgrp1 |  |-  ( F e. ( R GrpHom S ) -> R e. Grp ) | 
						
							| 22 | 21 | adantr |  |-  ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> R e. Grp ) | 
						
							| 23 | 1 11 | grpsubcl |  |-  ( ( R e. Grp /\ y e. A /\ z e. A ) -> ( y ( -g ` R ) z ) e. A ) | 
						
							| 24 | 23 | 3expb |  |-  ( ( R e. Grp /\ ( y e. A /\ z e. A ) ) -> ( y ( -g ` R ) z ) e. A ) | 
						
							| 25 | 22 24 | sylan |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( y ( -g ` R ) z ) e. A ) | 
						
							| 26 | 19 20 25 | rspcdva |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` ( y ( -g ` R ) z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) | 
						
							| 27 | 16 26 | sylbird |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) | 
						
							| 28 |  | ghmgrp2 |  |-  ( F e. ( R GrpHom S ) -> S e. Grp ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> S e. Grp ) | 
						
							| 30 | 9 | ad2antrr |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> F : A --> B ) | 
						
							| 31 |  | simprl |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> y e. A ) | 
						
							| 32 | 30 31 | ffvelcdmd |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` y ) e. B ) | 
						
							| 33 |  | simprr |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> z e. A ) | 
						
							| 34 | 30 33 | ffvelcdmd |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` z ) e. B ) | 
						
							| 35 | 2 4 12 | grpsubeq0 |  |-  ( ( S e. Grp /\ ( F ` y ) e. B /\ ( F ` z ) e. B ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. <-> ( F ` y ) = ( F ` z ) ) ) | 
						
							| 36 | 29 32 34 35 | syl3anc |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. <-> ( F ` y ) = ( F ` z ) ) ) | 
						
							| 37 | 21 | ad2antrr |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> R e. Grp ) | 
						
							| 38 | 1 3 11 | grpsubeq0 |  |-  ( ( R e. Grp /\ y e. A /\ z e. A ) -> ( ( y ( -g ` R ) z ) = N <-> y = z ) ) | 
						
							| 39 | 37 31 33 38 | syl3anc |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( y ( -g ` R ) z ) = N <-> y = z ) ) | 
						
							| 40 | 27 36 39 | 3imtr3d |  |-  ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) | 
						
							| 41 | 40 | ralrimivva |  |-  ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> A. y e. A A. z e. A ( ( F ` y ) = ( F ` z ) -> y = z ) ) | 
						
							| 42 |  | dff13 |  |-  ( F : A -1-1-> B <-> ( F : A --> B /\ A. y e. A A. z e. A ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) | 
						
							| 43 | 10 41 42 | sylanbrc |  |-  ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> F : A -1-1-> B ) | 
						
							| 44 | 8 43 | impbida |  |-  ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) ) |