Step |
Hyp |
Ref |
Expression |
1 |
|
ghmf1.x |
|- X = ( Base ` S ) |
2 |
|
ghmf1.y |
|- Y = ( Base ` T ) |
3 |
|
ghmf1.z |
|- .0. = ( 0g ` S ) |
4 |
|
ghmf1.u |
|- U = ( 0g ` T ) |
5 |
3 4
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` .0. ) = U ) |
6 |
5
|
ad2antrr |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> ( F ` .0. ) = U ) |
7 |
6
|
eqeq2d |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> ( ( F ` x ) = ( F ` .0. ) <-> ( F ` x ) = U ) ) |
8 |
|
simplr |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> F : X -1-1-> Y ) |
9 |
|
simpr |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> x e. X ) |
10 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
11 |
10
|
ad2antrr |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> S e. Grp ) |
12 |
1 3
|
grpidcl |
|- ( S e. Grp -> .0. e. X ) |
13 |
11 12
|
syl |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> .0. e. X ) |
14 |
|
f1fveq |
|- ( ( F : X -1-1-> Y /\ ( x e. X /\ .0. e. X ) ) -> ( ( F ` x ) = ( F ` .0. ) <-> x = .0. ) ) |
15 |
8 9 13 14
|
syl12anc |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> ( ( F ` x ) = ( F ` .0. ) <-> x = .0. ) ) |
16 |
7 15
|
bitr3d |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> ( ( F ` x ) = U <-> x = .0. ) ) |
17 |
16
|
biimpd |
|- ( ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) /\ x e. X ) -> ( ( F ` x ) = U -> x = .0. ) ) |
18 |
17
|
ralrimiva |
|- ( ( F e. ( S GrpHom T ) /\ F : X -1-1-> Y ) -> A. x e. X ( ( F ` x ) = U -> x = .0. ) ) |
19 |
1 2
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : X --> Y ) |
20 |
19
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) -> F : X --> Y ) |
21 |
|
eqid |
|- ( -g ` S ) = ( -g ` S ) |
22 |
|
eqid |
|- ( -g ` T ) = ( -g ` T ) |
23 |
1 21 22
|
ghmsub |
|- ( ( F e. ( S GrpHom T ) /\ y e. X /\ z e. X ) -> ( F ` ( y ( -g ` S ) z ) ) = ( ( F ` y ) ( -g ` T ) ( F ` z ) ) ) |
24 |
23
|
3expb |
|- ( ( F e. ( S GrpHom T ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( -g ` S ) z ) ) = ( ( F ` y ) ( -g ` T ) ( F ` z ) ) ) |
25 |
24
|
adantlr |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( -g ` S ) z ) ) = ( ( F ` y ) ( -g ` T ) ( F ` z ) ) ) |
26 |
25
|
eqeq1d |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` ( y ( -g ` S ) z ) ) = U <-> ( ( F ` y ) ( -g ` T ) ( F ` z ) ) = U ) ) |
27 |
|
fveqeq2 |
|- ( x = ( y ( -g ` S ) z ) -> ( ( F ` x ) = U <-> ( F ` ( y ( -g ` S ) z ) ) = U ) ) |
28 |
|
eqeq1 |
|- ( x = ( y ( -g ` S ) z ) -> ( x = .0. <-> ( y ( -g ` S ) z ) = .0. ) ) |
29 |
27 28
|
imbi12d |
|- ( x = ( y ( -g ` S ) z ) -> ( ( ( F ` x ) = U -> x = .0. ) <-> ( ( F ` ( y ( -g ` S ) z ) ) = U -> ( y ( -g ` S ) z ) = .0. ) ) ) |
30 |
|
simplr |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> A. x e. X ( ( F ` x ) = U -> x = .0. ) ) |
31 |
10
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) -> S e. Grp ) |
32 |
1 21
|
grpsubcl |
|- ( ( S e. Grp /\ y e. X /\ z e. X ) -> ( y ( -g ` S ) z ) e. X ) |
33 |
32
|
3expb |
|- ( ( S e. Grp /\ ( y e. X /\ z e. X ) ) -> ( y ( -g ` S ) z ) e. X ) |
34 |
31 33
|
sylan |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( y ( -g ` S ) z ) e. X ) |
35 |
29 30 34
|
rspcdva |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` ( y ( -g ` S ) z ) ) = U -> ( y ( -g ` S ) z ) = .0. ) ) |
36 |
26 35
|
sylbird |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( ( ( F ` y ) ( -g ` T ) ( F ` z ) ) = U -> ( y ( -g ` S ) z ) = .0. ) ) |
37 |
|
ghmgrp2 |
|- ( F e. ( S GrpHom T ) -> T e. Grp ) |
38 |
37
|
ad2antrr |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> T e. Grp ) |
39 |
19
|
ad2antrr |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> F : X --> Y ) |
40 |
|
simprl |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> y e. X ) |
41 |
39 40
|
ffvelrnd |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( F ` y ) e. Y ) |
42 |
|
simprr |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> z e. X ) |
43 |
39 42
|
ffvelrnd |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( F ` z ) e. Y ) |
44 |
2 4 22
|
grpsubeq0 |
|- ( ( T e. Grp /\ ( F ` y ) e. Y /\ ( F ` z ) e. Y ) -> ( ( ( F ` y ) ( -g ` T ) ( F ` z ) ) = U <-> ( F ` y ) = ( F ` z ) ) ) |
45 |
38 41 43 44
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( ( ( F ` y ) ( -g ` T ) ( F ` z ) ) = U <-> ( F ` y ) = ( F ` z ) ) ) |
46 |
10
|
ad2antrr |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> S e. Grp ) |
47 |
1 3 21
|
grpsubeq0 |
|- ( ( S e. Grp /\ y e. X /\ z e. X ) -> ( ( y ( -g ` S ) z ) = .0. <-> y = z ) ) |
48 |
46 40 42 47
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( ( y ( -g ` S ) z ) = .0. <-> y = z ) ) |
49 |
36 45 48
|
3imtr3d |
|- ( ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
50 |
49
|
ralrimivva |
|- ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) -> A. y e. X A. z e. X ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
51 |
|
dff13 |
|- ( F : X -1-1-> Y <-> ( F : X --> Y /\ A. y e. X A. z e. X ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) |
52 |
20 50 51
|
sylanbrc |
|- ( ( F e. ( S GrpHom T ) /\ A. x e. X ( ( F ` x ) = U -> x = .0. ) ) -> F : X -1-1-> Y ) |
53 |
18 52
|
impbida |
|- ( F e. ( S GrpHom T ) -> ( F : X -1-1-> Y <-> A. x e. X ( ( F ` x ) = U -> x = .0. ) ) ) |