Metamath Proof Explorer


Theorem ghmfghm

Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x
|- X = ( Base ` G )
ghmabl.y
|- Y = ( Base ` H )
ghmabl.p
|- .+ = ( +g ` G )
ghmabl.q
|- .+^ = ( +g ` H )
ghmabl.f
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
ghmabl.1
|- ( ph -> F : X -onto-> Y )
ghmfghm.3
|- ( ph -> G e. Grp )
Assertion ghmfghm
|- ( ph -> F e. ( G GrpHom H ) )

Proof

Step Hyp Ref Expression
1 ghmabl.x
 |-  X = ( Base ` G )
2 ghmabl.y
 |-  Y = ( Base ` H )
3 ghmabl.p
 |-  .+ = ( +g ` G )
4 ghmabl.q
 |-  .+^ = ( +g ` H )
5 ghmabl.f
 |-  ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
6 ghmabl.1
 |-  ( ph -> F : X -onto-> Y )
7 ghmfghm.3
 |-  ( ph -> G e. Grp )
8 5 1 2 3 4 6 7 ghmgrp
 |-  ( ph -> H e. Grp )
9 fof
 |-  ( F : X -onto-> Y -> F : X --> Y )
10 6 9 syl
 |-  ( ph -> F : X --> Y )
11 5 3expb
 |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
12 1 2 3 4 7 8 10 11 isghmd
 |-  ( ph -> F e. ( G GrpHom H ) )