Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmabl.x | |- X = ( Base ` G ) |
|
| ghmabl.y | |- Y = ( Base ` H ) |
||
| ghmabl.p | |- .+ = ( +g ` G ) |
||
| ghmabl.q | |- .+^ = ( +g ` H ) |
||
| ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
| ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
||
| ghmfghm.3 | |- ( ph -> G e. Grp ) |
||
| Assertion | ghmfghm | |- ( ph -> F e. ( G GrpHom H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.x | |- X = ( Base ` G ) |
|
| 2 | ghmabl.y | |- Y = ( Base ` H ) |
|
| 3 | ghmabl.p | |- .+ = ( +g ` G ) |
|
| 4 | ghmabl.q | |- .+^ = ( +g ` H ) |
|
| 5 | ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 6 | ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
|
| 7 | ghmfghm.3 | |- ( ph -> G e. Grp ) |
|
| 8 | 5 1 2 3 4 6 7 | ghmgrp | |- ( ph -> H e. Grp ) |
| 9 | fof | |- ( F : X -onto-> Y -> F : X --> Y ) |
|
| 10 | 6 9 | syl | |- ( ph -> F : X --> Y ) |
| 11 | 5 | 3expb | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 12 | 1 2 3 4 7 8 10 11 | isghmd | |- ( ph -> F e. ( G GrpHom H ) ) |