Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmabl.x | |- X = ( Base ` G ) |
|
ghmabl.y | |- Y = ( Base ` H ) |
||
ghmabl.p | |- .+ = ( +g ` G ) |
||
ghmabl.q | |- .+^ = ( +g ` H ) |
||
ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
||
ghmfghm.3 | |- ( ph -> G e. Grp ) |
||
Assertion | ghmfghm | |- ( ph -> F e. ( G GrpHom H ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmabl.x | |- X = ( Base ` G ) |
|
2 | ghmabl.y | |- Y = ( Base ` H ) |
|
3 | ghmabl.p | |- .+ = ( +g ` G ) |
|
4 | ghmabl.q | |- .+^ = ( +g ` H ) |
|
5 | ghmabl.f | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
6 | ghmabl.1 | |- ( ph -> F : X -onto-> Y ) |
|
7 | ghmfghm.3 | |- ( ph -> G e. Grp ) |
|
8 | 5 1 2 3 4 6 7 | ghmgrp | |- ( ph -> H e. Grp ) |
9 | fof | |- ( F : X -onto-> Y -> F : X --> Y ) |
|
10 | 6 9 | syl | |- ( ph -> F : X --> Y ) |
11 | 5 | 3expb | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
12 | 1 2 3 4 7 8 10 11 | isghmd | |- ( ph -> F e. ( G GrpHom H ) ) |