| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmgrp.f |
|- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 2 |
|
ghmgrp.x |
|- X = ( Base ` G ) |
| 3 |
|
ghmgrp.y |
|- Y = ( Base ` H ) |
| 4 |
|
ghmgrp.p |
|- .+ = ( +g ` G ) |
| 5 |
|
ghmgrp.q |
|- .+^ = ( +g ` H ) |
| 6 |
|
ghmgrp.1 |
|- ( ph -> F : X -onto-> Y ) |
| 7 |
|
ghmgrp.3 |
|- ( ph -> G e. Grp ) |
| 8 |
7
|
grpmndd |
|- ( ph -> G e. Mnd ) |
| 9 |
1 2 3 4 5 6 8
|
mhmmnd |
|- ( ph -> H e. Mnd ) |
| 10 |
|
fof |
|- ( F : X -onto-> Y -> F : X --> Y ) |
| 11 |
6 10
|
syl |
|- ( ph -> F : X --> Y ) |
| 12 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> F : X --> Y ) |
| 13 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> G e. Grp ) |
| 14 |
|
simplr |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> i e. X ) |
| 15 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 16 |
2 15
|
grpinvcl |
|- ( ( G e. Grp /\ i e. X ) -> ( ( invg ` G ) ` i ) e. X ) |
| 17 |
13 14 16
|
syl2anc |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( invg ` G ) ` i ) e. X ) |
| 18 |
12 17
|
ffvelcdmd |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( invg ` G ) ` i ) ) e. Y ) |
| 19 |
1
|
3adant1r |
|- ( ( ( ph /\ i e. X ) /\ x e. X /\ y e. X ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 20 |
7 16
|
sylan |
|- ( ( ph /\ i e. X ) -> ( ( invg ` G ) ` i ) e. X ) |
| 21 |
|
simpr |
|- ( ( ph /\ i e. X ) -> i e. X ) |
| 22 |
19 20 21
|
mhmlem |
|- ( ( ph /\ i e. X ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ ( F ` i ) ) ) |
| 23 |
22
|
ad4ant13 |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ ( F ` i ) ) ) |
| 24 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 25 |
2 4 24 15
|
grplinv |
|- ( ( G e. Grp /\ i e. X ) -> ( ( ( invg ` G ) ` i ) .+ i ) = ( 0g ` G ) ) |
| 26 |
25
|
fveq2d |
|- ( ( G e. Grp /\ i e. X ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( F ` ( 0g ` G ) ) ) |
| 27 |
13 14 26
|
syl2anc |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( F ` ( 0g ` G ) ) ) |
| 28 |
1 2 3 4 5 6 8 24
|
mhmid |
|- ( ph -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
| 29 |
28
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) |
| 30 |
27 29
|
eqtrd |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` ( ( ( invg ` G ) ` i ) .+ i ) ) = ( 0g ` H ) ) |
| 31 |
|
simpr |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( F ` i ) = a ) |
| 32 |
31
|
oveq2d |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` ( ( invg ` G ) ` i ) ) .+^ ( F ` i ) ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) ) |
| 33 |
23 30 32
|
3eqtr3rd |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) = ( 0g ` H ) ) |
| 34 |
|
oveq1 |
|- ( f = ( F ` ( ( invg ` G ) ` i ) ) -> ( f .+^ a ) = ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) ) |
| 35 |
34
|
eqeq1d |
|- ( f = ( F ` ( ( invg ` G ) ` i ) ) -> ( ( f .+^ a ) = ( 0g ` H ) <-> ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) = ( 0g ` H ) ) ) |
| 36 |
35
|
rspcev |
|- ( ( ( F ` ( ( invg ` G ) ` i ) ) e. Y /\ ( ( F ` ( ( invg ` G ) ` i ) ) .+^ a ) = ( 0g ` H ) ) -> E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 37 |
18 33 36
|
syl2anc |
|- ( ( ( ( ph /\ a e. Y ) /\ i e. X ) /\ ( F ` i ) = a ) -> E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 38 |
|
foelcdmi |
|- ( ( F : X -onto-> Y /\ a e. Y ) -> E. i e. X ( F ` i ) = a ) |
| 39 |
6 38
|
sylan |
|- ( ( ph /\ a e. Y ) -> E. i e. X ( F ` i ) = a ) |
| 40 |
37 39
|
r19.29a |
|- ( ( ph /\ a e. Y ) -> E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 41 |
40
|
ralrimiva |
|- ( ph -> A. a e. Y E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) |
| 42 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 43 |
3 5 42
|
isgrp |
|- ( H e. Grp <-> ( H e. Mnd /\ A. a e. Y E. f e. Y ( f .+^ a ) = ( 0g ` H ) ) ) |
| 44 |
9 41 43
|
sylanbrc |
|- ( ph -> H e. Grp ) |