| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` S ) = ( Base ` S )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` T ) = ( Base ` T )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` S ) = ( +g ` S )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` T ) = ( +g ` T )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							isghm | 
							 |-  ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. y e. ( Base ` S ) A. x e. ( Base ` S ) ( F ` ( y ( +g ` S ) x ) ) = ( ( F ` y ) ( +g ` T ) ( F ` x ) ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simplbi | 
							 |-  ( F e. ( S GrpHom T ) -> ( S e. Grp /\ T e. Grp ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprd | 
							 |-  ( F e. ( S GrpHom T ) -> T e. Grp )  |