Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
2 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
3 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
4 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
5 |
1 2 3 4
|
isghm |
|- ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. y e. ( Base ` S ) A. x e. ( Base ` S ) ( F ` ( y ( +g ` S ) x ) ) = ( ( F ` y ) ( +g ` T ) ( F ` x ) ) ) ) ) |
6 |
5
|
simplbi |
|- ( F e. ( S GrpHom T ) -> ( S e. Grp /\ T e. Grp ) ) |
7 |
6
|
simprd |
|- ( F e. ( S GrpHom T ) -> T e. Grp ) |