| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmid.y |
|- Y = ( 0g ` S ) |
| 2 |
|
ghmid.z |
|- .0. = ( 0g ` T ) |
| 3 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
| 4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 5 |
4 1
|
grpidcl |
|- ( S e. Grp -> Y e. ( Base ` S ) ) |
| 6 |
3 5
|
syl |
|- ( F e. ( S GrpHom T ) -> Y e. ( Base ` S ) ) |
| 7 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 8 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
| 9 |
4 7 8
|
ghmlin |
|- ( ( F e. ( S GrpHom T ) /\ Y e. ( Base ` S ) /\ Y e. ( Base ` S ) ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) ) |
| 10 |
6 6 9
|
mpd3an23 |
|- ( F e. ( S GrpHom T ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) ) |
| 11 |
4 7 1
|
grplid |
|- ( ( S e. Grp /\ Y e. ( Base ` S ) ) -> ( Y ( +g ` S ) Y ) = Y ) |
| 12 |
3 6 11
|
syl2anc |
|- ( F e. ( S GrpHom T ) -> ( Y ( +g ` S ) Y ) = Y ) |
| 13 |
12
|
fveq2d |
|- ( F e. ( S GrpHom T ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( F ` Y ) ) |
| 14 |
10 13
|
eqtr3d |
|- ( F e. ( S GrpHom T ) -> ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) ) |
| 15 |
|
ghmgrp2 |
|- ( F e. ( S GrpHom T ) -> T e. Grp ) |
| 16 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 17 |
4 16
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 18 |
17 6
|
ffvelcdmd |
|- ( F e. ( S GrpHom T ) -> ( F ` Y ) e. ( Base ` T ) ) |
| 19 |
16 8 2
|
grpid |
|- ( ( T e. Grp /\ ( F ` Y ) e. ( Base ` T ) ) -> ( ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) <-> .0. = ( F ` Y ) ) ) |
| 20 |
15 18 19
|
syl2anc |
|- ( F e. ( S GrpHom T ) -> ( ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) <-> .0. = ( F ` Y ) ) ) |
| 21 |
14 20
|
mpbid |
|- ( F e. ( S GrpHom T ) -> .0. = ( F ` Y ) ) |
| 22 |
21
|
eqcomd |
|- ( F e. ( S GrpHom T ) -> ( F ` Y ) = .0. ) |