Metamath Proof Explorer


Theorem ghmid

Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmid.y
|- Y = ( 0g ` S )
ghmid.z
|- .0. = ( 0g ` T )
Assertion ghmid
|- ( F e. ( S GrpHom T ) -> ( F ` Y ) = .0. )

Proof

Step Hyp Ref Expression
1 ghmid.y
 |-  Y = ( 0g ` S )
2 ghmid.z
 |-  .0. = ( 0g ` T )
3 ghmgrp1
 |-  ( F e. ( S GrpHom T ) -> S e. Grp )
4 eqid
 |-  ( Base ` S ) = ( Base ` S )
5 4 1 grpidcl
 |-  ( S e. Grp -> Y e. ( Base ` S ) )
6 3 5 syl
 |-  ( F e. ( S GrpHom T ) -> Y e. ( Base ` S ) )
7 eqid
 |-  ( +g ` S ) = ( +g ` S )
8 eqid
 |-  ( +g ` T ) = ( +g ` T )
9 4 7 8 ghmlin
 |-  ( ( F e. ( S GrpHom T ) /\ Y e. ( Base ` S ) /\ Y e. ( Base ` S ) ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) )
10 6 6 9 mpd3an23
 |-  ( F e. ( S GrpHom T ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) )
11 4 7 1 grplid
 |-  ( ( S e. Grp /\ Y e. ( Base ` S ) ) -> ( Y ( +g ` S ) Y ) = Y )
12 3 6 11 syl2anc
 |-  ( F e. ( S GrpHom T ) -> ( Y ( +g ` S ) Y ) = Y )
13 12 fveq2d
 |-  ( F e. ( S GrpHom T ) -> ( F ` ( Y ( +g ` S ) Y ) ) = ( F ` Y ) )
14 10 13 eqtr3d
 |-  ( F e. ( S GrpHom T ) -> ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) )
15 ghmgrp2
 |-  ( F e. ( S GrpHom T ) -> T e. Grp )
16 eqid
 |-  ( Base ` T ) = ( Base ` T )
17 4 16 ghmf
 |-  ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) )
18 17 6 ffvelrnd
 |-  ( F e. ( S GrpHom T ) -> ( F ` Y ) e. ( Base ` T ) )
19 16 8 2 grpid
 |-  ( ( T e. Grp /\ ( F ` Y ) e. ( Base ` T ) ) -> ( ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) <-> .0. = ( F ` Y ) ) )
20 15 18 19 syl2anc
 |-  ( F e. ( S GrpHom T ) -> ( ( ( F ` Y ) ( +g ` T ) ( F ` Y ) ) = ( F ` Y ) <-> .0. = ( F ` Y ) ) )
21 14 20 mpbid
 |-  ( F e. ( S GrpHom T ) -> .0. = ( F ` Y ) )
22 21 eqcomd
 |-  ( F e. ( S GrpHom T ) -> ( F ` Y ) = .0. )