Description: The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ghmima | |- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima | |- ( F " U ) = ran ( F |` U ) |
|
2 | eqid | |- ( S |`s U ) = ( S |`s U ) |
|
3 | 2 | resghm | |- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F |` U ) e. ( ( S |`s U ) GrpHom T ) ) |
4 | ghmrn | |- ( ( F |` U ) e. ( ( S |`s U ) GrpHom T ) -> ran ( F |` U ) e. ( SubGrp ` T ) ) |
|
5 | 3 4 | syl | |- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ran ( F |` U ) e. ( SubGrp ` T ) ) |
6 | 1 5 | eqeltrid | |- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) |