Metamath Proof Explorer


Theorem ghmima

Description: The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmima
|- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) )

Proof

Step Hyp Ref Expression
1 df-ima
 |-  ( F " U ) = ran ( F |` U )
2 eqid
 |-  ( S |`s U ) = ( S |`s U )
3 2 resghm
 |-  ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F |` U ) e. ( ( S |`s U ) GrpHom T ) )
4 ghmrn
 |-  ( ( F |` U ) e. ( ( S |`s U ) GrpHom T ) -> ran ( F |` U ) e. ( SubGrp ` T ) )
5 3 4 syl
 |-  ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ran ( F |` U ) e. ( SubGrp ` T ) )
6 1 5 eqeltrid
 |-  ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) )