Step |
Hyp |
Ref |
Expression |
1 |
|
ghminv.b |
|- B = ( Base ` S ) |
2 |
|
ghminv.y |
|- M = ( invg ` S ) |
3 |
|
ghminv.z |
|- N = ( invg ` T ) |
4 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
5 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
6 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
7 |
1 5 6 2
|
grprinv |
|- ( ( S e. Grp /\ X e. B ) -> ( X ( +g ` S ) ( M ` X ) ) = ( 0g ` S ) ) |
8 |
4 7
|
sylan |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( X ( +g ` S ) ( M ` X ) ) = ( 0g ` S ) ) |
9 |
8
|
fveq2d |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( X ( +g ` S ) ( M ` X ) ) ) = ( F ` ( 0g ` S ) ) ) |
10 |
1 2
|
grpinvcl |
|- ( ( S e. Grp /\ X e. B ) -> ( M ` X ) e. B ) |
11 |
4 10
|
sylan |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( M ` X ) e. B ) |
12 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
13 |
1 5 12
|
ghmlin |
|- ( ( F e. ( S GrpHom T ) /\ X e. B /\ ( M ` X ) e. B ) -> ( F ` ( X ( +g ` S ) ( M ` X ) ) ) = ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) ) |
14 |
11 13
|
mpd3an3 |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( X ( +g ` S ) ( M ` X ) ) ) = ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) ) |
15 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
16 |
6 15
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
17 |
16
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
18 |
9 14 17
|
3eqtr3d |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) = ( 0g ` T ) ) |
19 |
|
ghmgrp2 |
|- ( F e. ( S GrpHom T ) -> T e. Grp ) |
20 |
19
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> T e. Grp ) |
21 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
22 |
1 21
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : B --> ( Base ` T ) ) |
23 |
22
|
ffvelrnda |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` X ) e. ( Base ` T ) ) |
24 |
22
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> F : B --> ( Base ` T ) ) |
25 |
24 11
|
ffvelrnd |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( M ` X ) ) e. ( Base ` T ) ) |
26 |
21 12 15 3
|
grpinvid1 |
|- ( ( T e. Grp /\ ( F ` X ) e. ( Base ` T ) /\ ( F ` ( M ` X ) ) e. ( Base ` T ) ) -> ( ( N ` ( F ` X ) ) = ( F ` ( M ` X ) ) <-> ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) = ( 0g ` T ) ) ) |
27 |
20 23 25 26
|
syl3anc |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( ( N ` ( F ` X ) ) = ( F ` ( M ` X ) ) <-> ( ( F ` X ) ( +g ` T ) ( F ` ( M ` X ) ) ) = ( 0g ` T ) ) ) |
28 |
18 27
|
mpbird |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( N ` ( F ` X ) ) = ( F ` ( M ` X ) ) ) |
29 |
28
|
eqcomd |
|- ( ( F e. ( S GrpHom T ) /\ X e. B ) -> ( F ` ( M ` X ) ) = ( N ` ( F ` X ) ) ) |