Metamath Proof Explorer


Theorem ghmker

Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis ghmker.1
|- .0. = ( 0g ` T )
Assertion ghmker
|- ( F e. ( S GrpHom T ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) )

Proof

Step Hyp Ref Expression
1 ghmker.1
 |-  .0. = ( 0g ` T )
2 ghmgrp2
 |-  ( F e. ( S GrpHom T ) -> T e. Grp )
3 1 0nsg
 |-  ( T e. Grp -> { .0. } e. ( NrmSGrp ` T ) )
4 2 3 syl
 |-  ( F e. ( S GrpHom T ) -> { .0. } e. ( NrmSGrp ` T ) )
5 ghmnsgpreima
 |-  ( ( F e. ( S GrpHom T ) /\ { .0. } e. ( NrmSGrp ` T ) ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) )
6 4 5 mpdan
 |-  ( F e. ( S GrpHom T ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) )