Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ghmker.1 | |- .0. = ( 0g ` T ) |
|
Assertion | ghmker | |- ( F e. ( S GrpHom T ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmker.1 | |- .0. = ( 0g ` T ) |
|
2 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) |
|
3 | 1 | 0nsg | |- ( T e. Grp -> { .0. } e. ( NrmSGrp ` T ) ) |
4 | 2 3 | syl | |- ( F e. ( S GrpHom T ) -> { .0. } e. ( NrmSGrp ` T ) ) |
5 | ghmnsgpreima | |- ( ( F e. ( S GrpHom T ) /\ { .0. } e. ( NrmSGrp ` T ) ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) ) |
|
6 | 4 5 | mpdan | |- ( F e. ( S GrpHom T ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) ) |