Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ghmker.1 | |- .0. = ( 0g ` T ) | |
| Assertion | ghmker | |- ( F e. ( S GrpHom T ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ghmker.1 | |- .0. = ( 0g ` T ) | |
| 2 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) | |
| 3 | 1 | 0nsg |  |-  ( T e. Grp -> { .0. } e. ( NrmSGrp ` T ) ) | 
| 4 | 2 3 | syl |  |-  ( F e. ( S GrpHom T ) -> { .0. } e. ( NrmSGrp ` T ) ) | 
| 5 | ghmnsgpreima |  |-  ( ( F e. ( S GrpHom T ) /\ { .0. } e. ( NrmSGrp ` T ) ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) ) | |
| 6 | 4 5 | mpdan |  |-  ( F e. ( S GrpHom T ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` S ) ) |