Step |
Hyp |
Ref |
Expression |
1 |
|
ghmlin.x |
|- X = ( Base ` S ) |
2 |
|
ghmlin.a |
|- .+ = ( +g ` S ) |
3 |
|
ghmlin.b |
|- .+^ = ( +g ` T ) |
4 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
5 |
1 4 2 3
|
isghm |
|- ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : X --> ( Base ` T ) /\ A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) ) ) |
6 |
5
|
simprbi |
|- ( F e. ( S GrpHom T ) -> ( F : X --> ( Base ` T ) /\ A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) ) |
7 |
6
|
simprd |
|- ( F e. ( S GrpHom T ) -> A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) ) |
8 |
|
fvoveq1 |
|- ( a = U -> ( F ` ( a .+ b ) ) = ( F ` ( U .+ b ) ) ) |
9 |
|
fveq2 |
|- ( a = U -> ( F ` a ) = ( F ` U ) ) |
10 |
9
|
oveq1d |
|- ( a = U -> ( ( F ` a ) .+^ ( F ` b ) ) = ( ( F ` U ) .+^ ( F ` b ) ) ) |
11 |
8 10
|
eqeq12d |
|- ( a = U -> ( ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) <-> ( F ` ( U .+ b ) ) = ( ( F ` U ) .+^ ( F ` b ) ) ) ) |
12 |
|
oveq2 |
|- ( b = V -> ( U .+ b ) = ( U .+ V ) ) |
13 |
12
|
fveq2d |
|- ( b = V -> ( F ` ( U .+ b ) ) = ( F ` ( U .+ V ) ) ) |
14 |
|
fveq2 |
|- ( b = V -> ( F ` b ) = ( F ` V ) ) |
15 |
14
|
oveq2d |
|- ( b = V -> ( ( F ` U ) .+^ ( F ` b ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) |
16 |
13 15
|
eqeq12d |
|- ( b = V -> ( ( F ` ( U .+ b ) ) = ( ( F ` U ) .+^ ( F ` b ) ) <-> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) ) |
17 |
11 16
|
rspc2v |
|- ( ( U e. X /\ V e. X ) -> ( A. a e. X A. b e. X ( F ` ( a .+ b ) ) = ( ( F ` a ) .+^ ( F ` b ) ) -> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) ) |
18 |
7 17
|
mpan9 |
|- ( ( F e. ( S GrpHom T ) /\ ( U e. X /\ V e. X ) ) -> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) |
19 |
18
|
3impb |
|- ( ( F e. ( S GrpHom T ) /\ U e. X /\ V e. X ) -> ( F ` ( U .+ V ) ) = ( ( F ` U ) .+^ ( F ` V ) ) ) |