Step |
Hyp |
Ref |
Expression |
1 |
|
ghmmhm |
|- ( f e. ( S GrpHom T ) -> f e. ( S MndHom T ) ) |
2 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
3 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
4 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
5 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
6 |
|
simpll |
|- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> S e. Grp ) |
7 |
|
simplr |
|- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> T e. Grp ) |
8 |
2 3
|
mhmf |
|- ( f e. ( S MndHom T ) -> f : ( Base ` S ) --> ( Base ` T ) ) |
9 |
8
|
adantl |
|- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> f : ( Base ` S ) --> ( Base ` T ) ) |
10 |
2 4 5
|
mhmlin |
|- ( ( f e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( f ` ( x ( +g ` S ) y ) ) = ( ( f ` x ) ( +g ` T ) ( f ` y ) ) ) |
11 |
10
|
3expb |
|- ( ( f e. ( S MndHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( f ` ( x ( +g ` S ) y ) ) = ( ( f ` x ) ( +g ` T ) ( f ` y ) ) ) |
12 |
11
|
adantll |
|- ( ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( f ` ( x ( +g ` S ) y ) ) = ( ( f ` x ) ( +g ` T ) ( f ` y ) ) ) |
13 |
2 3 4 5 6 7 9 12
|
isghmd |
|- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> f e. ( S GrpHom T ) ) |
14 |
13
|
ex |
|- ( ( S e. Grp /\ T e. Grp ) -> ( f e. ( S MndHom T ) -> f e. ( S GrpHom T ) ) ) |
15 |
1 14
|
impbid2 |
|- ( ( S e. Grp /\ T e. Grp ) -> ( f e. ( S GrpHom T ) <-> f e. ( S MndHom T ) ) ) |
16 |
15
|
eqrdv |
|- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |