| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmmulg.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | ghmmulg.s |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | ghmmulg.t |  |-  .X. = ( .g ` H ) | 
						
							| 4 |  | ghmmhm |  |-  ( F e. ( G GrpHom H ) -> F e. ( G MndHom H ) ) | 
						
							| 5 | 1 2 3 | mhmmulg |  |-  ( ( F e. ( G MndHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 6 | 4 5 | syl3an1 |  |-  ( ( F e. ( G GrpHom H ) /\ N e. NN0 /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 7 | 6 | 3expa |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. NN0 ) /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 8 | 7 | an32s |  |-  ( ( ( F e. ( G GrpHom H ) /\ X e. B ) /\ N e. NN0 ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 9 | 8 | 3adantl2 |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ N e. NN0 ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 10 |  | simpl1 |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 11 | 10 4 | syl |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F e. ( G MndHom H ) ) | 
						
							| 12 |  | nnnn0 |  |-  ( -u N e. NN -> -u N e. NN0 ) | 
						
							| 13 | 12 | ad2antll |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) | 
						
							| 14 |  | simpl3 |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> X e. B ) | 
						
							| 15 | 1 2 3 | mhmmulg |  |-  ( ( F e. ( G MndHom H ) /\ -u N e. NN0 /\ X e. B ) -> ( F ` ( -u N .x. X ) ) = ( -u N .X. ( F ` X ) ) ) | 
						
							| 16 | 11 13 14 15 | syl3anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( -u N .x. X ) ) = ( -u N .X. ( F ` X ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) | 
						
							| 18 |  | ghmgrp1 |  |-  ( F e. ( G GrpHom H ) -> G e. Grp ) | 
						
							| 19 | 10 18 | syl |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> G e. Grp ) | 
						
							| 20 |  | nnz |  |-  ( -u N e. NN -> -u N e. ZZ ) | 
						
							| 21 | 20 | ad2antll |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) | 
						
							| 22 | 1 2 | mulgcl |  |-  ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u N .x. X ) e. B ) | 
						
							| 23 | 19 21 14 22 | syl3anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u N .x. X ) e. B ) | 
						
							| 24 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 25 |  | eqid |  |-  ( invg ` H ) = ( invg ` H ) | 
						
							| 26 | 1 24 25 | ghminv |  |-  ( ( F e. ( G GrpHom H ) /\ ( -u N .x. X ) e. B ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) ) | 
						
							| 27 | 10 23 26 | syl2anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( ( invg ` H ) ` ( F ` ( -u N .x. X ) ) ) ) | 
						
							| 28 |  | ghmgrp2 |  |-  ( F e. ( G GrpHom H ) -> H e. Grp ) | 
						
							| 29 | 10 28 | syl |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> H e. Grp ) | 
						
							| 30 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 31 | 1 30 | ghmf |  |-  ( F e. ( G GrpHom H ) -> F : B --> ( Base ` H ) ) | 
						
							| 32 | 10 31 | syl |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> F : B --> ( Base ` H ) ) | 
						
							| 33 | 32 14 | ffvelcdmd |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` X ) e. ( Base ` H ) ) | 
						
							| 34 | 30 3 25 | mulgneg |  |-  ( ( H e. Grp /\ -u N e. ZZ /\ ( F ` X ) e. ( Base ` H ) ) -> ( -u -u N .X. ( F ` X ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) | 
						
							| 35 | 29 21 33 34 | syl3anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( ( invg ` H ) ` ( -u N .X. ( F ` X ) ) ) ) | 
						
							| 36 | 17 27 35 | 3eqtr4d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( -u -u N .X. ( F ` X ) ) ) | 
						
							| 37 | 1 2 24 | mulgneg |  |-  ( ( G e. Grp /\ -u N e. ZZ /\ X e. B ) -> ( -u -u N .x. X ) = ( ( invg ` G ) ` ( -u N .x. X ) ) ) | 
						
							| 38 | 19 21 14 37 | syl3anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( ( invg ` G ) ` ( -u N .x. X ) ) ) | 
						
							| 39 |  | simprl |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) | 
						
							| 41 | 40 | negnegd |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u -u N = N ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .x. X ) = ( N .x. X ) ) | 
						
							| 43 | 38 42 | eqtr3d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( invg ` G ) ` ( -u N .x. X ) ) = ( N .x. X ) ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( ( invg ` G ) ` ( -u N .x. X ) ) ) = ( F ` ( N .x. X ) ) ) | 
						
							| 45 | 36 44 | eqtr3d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( F ` ( N .x. X ) ) ) | 
						
							| 46 | 41 | oveq1d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u -u N .X. ( F ` X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 47 | 45 46 | eqtr3d |  |-  ( ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) | 
						
							| 48 |  | simp2 |  |-  ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> N e. ZZ ) | 
						
							| 49 |  | elznn0nn |  |-  ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) | 
						
							| 50 | 48 49 | sylib |  |-  ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) | 
						
							| 51 | 9 47 50 | mpjaodan |  |-  ( ( F e. ( G GrpHom H ) /\ N e. ZZ /\ X e. B ) -> ( F ` ( N .x. X ) ) = ( N .X. ( F ` X ) ) ) |