| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmnsgima.1 |  |-  Y = ( Base ` T ) | 
						
							| 2 |  | simp1 |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F e. ( S GrpHom T ) ) | 
						
							| 3 |  | nsgsubg |  |-  ( U e. ( NrmSGrp ` S ) -> U e. ( SubGrp ` S ) ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> U e. ( SubGrp ` S ) ) | 
						
							| 5 |  | ghmima |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( F " U ) e. ( SubGrp ` T ) ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F e. ( S GrpHom T ) ) | 
						
							| 8 |  | ghmgrp1 |  |-  ( F e. ( S GrpHom T ) -> S e. Grp ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> S e. Grp ) | 
						
							| 10 |  | simprl |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> z e. ( Base ` S ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 12 | 11 | subgss |  |-  ( U e. ( SubGrp ` S ) -> U C_ ( Base ` S ) ) | 
						
							| 13 | 4 12 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> U C_ ( Base ` S ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> U C_ ( Base ` S ) ) | 
						
							| 15 |  | simprr |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> x e. U ) | 
						
							| 16 | 14 15 | sseldd |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> x e. ( Base ` S ) ) | 
						
							| 17 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 18 | 11 17 | grpcl |  |-  ( ( S e. Grp /\ z e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( z ( +g ` S ) x ) e. ( Base ` S ) ) | 
						
							| 19 | 9 10 16 18 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( z ( +g ` S ) x ) e. ( Base ` S ) ) | 
						
							| 20 |  | eqid |  |-  ( -g ` S ) = ( -g ` S ) | 
						
							| 21 |  | eqid |  |-  ( -g ` T ) = ( -g ` T ) | 
						
							| 22 | 11 20 21 | ghmsub |  |-  ( ( F e. ( S GrpHom T ) /\ ( z ( +g ` S ) x ) e. ( Base ` S ) /\ z e. ( Base ` S ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) ) | 
						
							| 23 | 7 19 10 22 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) ) | 
						
							| 24 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 25 | 11 17 24 | ghmlin |  |-  ( ( F e. ( S GrpHom T ) /\ z e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( F ` ( z ( +g ` S ) x ) ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) | 
						
							| 26 | 7 10 16 25 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( z ( +g ` S ) x ) ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) | 
						
							| 28 | 23 27 | eqtrd |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) | 
						
							| 29 | 11 1 | ghmf |  |-  ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> Y ) | 
						
							| 30 | 2 29 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F : ( Base ` S ) --> Y ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F : ( Base ` S ) --> Y ) | 
						
							| 32 | 31 | ffnd |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F Fn ( Base ` S ) ) | 
						
							| 33 |  | simpl2 |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> U e. ( NrmSGrp ` S ) ) | 
						
							| 34 | 11 17 20 | nsgconj |  |-  ( ( U e. ( NrmSGrp ` S ) /\ z e. ( Base ` S ) /\ x e. U ) -> ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) | 
						
							| 35 | 33 10 15 34 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) | 
						
							| 36 |  | fnfvima |  |-  ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) /\ ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) e. ( F " U ) ) | 
						
							| 37 | 32 14 35 36 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) e. ( F " U ) ) | 
						
							| 38 | 28 37 | eqeltrrd |  |-  ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) | 
						
							| 39 | 38 | ralrimivva |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) | 
						
							| 40 | 30 | ffnd |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F Fn ( Base ` S ) ) | 
						
							| 41 |  | oveq1 |  |-  ( x = ( F ` z ) -> ( x ( +g ` T ) y ) = ( ( F ` z ) ( +g ` T ) y ) ) | 
						
							| 42 |  | id |  |-  ( x = ( F ` z ) -> x = ( F ` z ) ) | 
						
							| 43 | 41 42 | oveq12d |  |-  ( x = ( F ` z ) -> ( ( x ( +g ` T ) y ) ( -g ` T ) x ) = ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( x = ( F ` z ) -> ( ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 45 | 44 | ralbidv |  |-  ( x = ( F ` z ) -> ( A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 46 | 45 | ralrn |  |-  ( F Fn ( Base ` S ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 47 | 40 46 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 48 |  | simp3 |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ran F = Y ) | 
						
							| 49 | 48 | raleqdv |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) ) | 
						
							| 50 |  | oveq2 |  |-  ( y = ( F ` x ) -> ( ( F ` z ) ( +g ` T ) y ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( y = ( F ` x ) -> ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) | 
						
							| 52 | 51 | eleq1d |  |-  ( y = ( F ` x ) -> ( ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 53 | 52 | ralima |  |-  ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) ) -> ( A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 54 | 40 13 53 | syl2anc |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 55 | 54 | ralbidv |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 56 | 47 49 55 | 3bitr3d |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) | 
						
							| 57 | 39 56 | mpbird |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) | 
						
							| 58 | 1 24 21 | isnsg3 |  |-  ( ( F " U ) e. ( NrmSGrp ` T ) <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) ) | 
						
							| 59 | 6 57 58 | sylanbrc |  |-  ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( F " U ) e. ( NrmSGrp ` T ) ) |