Step |
Hyp |
Ref |
Expression |
1 |
|
ghmnsgima.1 |
|- Y = ( Base ` T ) |
2 |
|
simp1 |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F e. ( S GrpHom T ) ) |
3 |
|
nsgsubg |
|- ( U e. ( NrmSGrp ` S ) -> U e. ( SubGrp ` S ) ) |
4 |
3
|
3ad2ant2 |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> U e. ( SubGrp ` S ) ) |
5 |
|
ghmima |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( SubGrp ` S ) ) -> ( F " U ) e. ( SubGrp ` T ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( F " U ) e. ( SubGrp ` T ) ) |
7 |
2
|
adantr |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F e. ( S GrpHom T ) ) |
8 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
9 |
7 8
|
syl |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> S e. Grp ) |
10 |
|
simprl |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> z e. ( Base ` S ) ) |
11 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
12 |
11
|
subgss |
|- ( U e. ( SubGrp ` S ) -> U C_ ( Base ` S ) ) |
13 |
4 12
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> U C_ ( Base ` S ) ) |
14 |
13
|
adantr |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> U C_ ( Base ` S ) ) |
15 |
|
simprr |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> x e. U ) |
16 |
14 15
|
sseldd |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> x e. ( Base ` S ) ) |
17 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
18 |
11 17
|
grpcl |
|- ( ( S e. Grp /\ z e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( z ( +g ` S ) x ) e. ( Base ` S ) ) |
19 |
9 10 16 18
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( z ( +g ` S ) x ) e. ( Base ` S ) ) |
20 |
|
eqid |
|- ( -g ` S ) = ( -g ` S ) |
21 |
|
eqid |
|- ( -g ` T ) = ( -g ` T ) |
22 |
11 20 21
|
ghmsub |
|- ( ( F e. ( S GrpHom T ) /\ ( z ( +g ` S ) x ) e. ( Base ` S ) /\ z e. ( Base ` S ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) ) |
23 |
7 19 10 22
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) ) |
24 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
25 |
11 17 24
|
ghmlin |
|- ( ( F e. ( S GrpHom T ) /\ z e. ( Base ` S ) /\ x e. ( Base ` S ) ) -> ( F ` ( z ( +g ` S ) x ) ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) |
26 |
7 10 16 25
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( z ( +g ` S ) x ) ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) |
27 |
26
|
oveq1d |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( F ` ( z ( +g ` S ) x ) ) ( -g ` T ) ( F ` z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) |
28 |
23 27
|
eqtrd |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) |
29 |
11 1
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> Y ) |
30 |
2 29
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F : ( Base ` S ) --> Y ) |
31 |
30
|
adantr |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F : ( Base ` S ) --> Y ) |
32 |
31
|
ffnd |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> F Fn ( Base ` S ) ) |
33 |
|
simpl2 |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> U e. ( NrmSGrp ` S ) ) |
34 |
11 17 20
|
nsgconj |
|- ( ( U e. ( NrmSGrp ` S ) /\ z e. ( Base ` S ) /\ x e. U ) -> ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) |
35 |
33 10 15 34
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) |
36 |
|
fnfvima |
|- ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) /\ ( ( z ( +g ` S ) x ) ( -g ` S ) z ) e. U ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) e. ( F " U ) ) |
37 |
32 14 35 36
|
syl3anc |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( F ` ( ( z ( +g ` S ) x ) ( -g ` S ) z ) ) e. ( F " U ) ) |
38 |
28 37
|
eqeltrrd |
|- ( ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) /\ ( z e. ( Base ` S ) /\ x e. U ) ) -> ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) |
39 |
38
|
ralrimivva |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) |
40 |
30
|
ffnd |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> F Fn ( Base ` S ) ) |
41 |
|
oveq1 |
|- ( x = ( F ` z ) -> ( x ( +g ` T ) y ) = ( ( F ` z ) ( +g ` T ) y ) ) |
42 |
|
id |
|- ( x = ( F ` z ) -> x = ( F ` z ) ) |
43 |
41 42
|
oveq12d |
|- ( x = ( F ` z ) -> ( ( x ( +g ` T ) y ) ( -g ` T ) x ) = ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) ) |
44 |
43
|
eleq1d |
|- ( x = ( F ` z ) -> ( ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
45 |
44
|
ralbidv |
|- ( x = ( F ` z ) -> ( A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
46 |
45
|
ralrn |
|- ( F Fn ( Base ` S ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
47 |
40 46
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
48 |
|
simp3 |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ran F = Y ) |
49 |
48
|
raleqdv |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. ran F A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) ) |
50 |
|
oveq2 |
|- ( y = ( F ` x ) -> ( ( F ` z ) ( +g ` T ) y ) = ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ) |
51 |
50
|
oveq1d |
|- ( y = ( F ` x ) -> ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) = ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) ) |
52 |
51
|
eleq1d |
|- ( y = ( F ` x ) -> ( ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
53 |
52
|
ralima |
|- ( ( F Fn ( Base ` S ) /\ U C_ ( Base ` S ) ) -> ( A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
54 |
40 13 53
|
syl2anc |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
55 |
54
|
ralbidv |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. z e. ( Base ` S ) A. y e. ( F " U ) ( ( ( F ` z ) ( +g ` T ) y ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
56 |
47 49 55
|
3bitr3d |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) <-> A. z e. ( Base ` S ) A. x e. U ( ( ( F ` z ) ( +g ` T ) ( F ` x ) ) ( -g ` T ) ( F ` z ) ) e. ( F " U ) ) ) |
57 |
39 56
|
mpbird |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) |
58 |
1 24 21
|
isnsg3 |
|- ( ( F " U ) e. ( NrmSGrp ` T ) <-> ( ( F " U ) e. ( SubGrp ` T ) /\ A. x e. Y A. y e. ( F " U ) ( ( x ( +g ` T ) y ) ( -g ` T ) x ) e. ( F " U ) ) ) |
59 |
6 57 58
|
sylanbrc |
|- ( ( F e. ( S GrpHom T ) /\ U e. ( NrmSGrp ` S ) /\ ran F = Y ) -> ( F " U ) e. ( NrmSGrp ` T ) ) |