| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvimass |  |-  ( `' F " V ) C_ dom F | 
						
							| 2 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 3 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 4 | 2 3 | ghmf |  |-  ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 6 | 1 5 | fssdm |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) C_ ( Base ` S ) ) | 
						
							| 7 |  | ghmgrp1 |  |-  ( F e. ( S GrpHom T ) -> S e. Grp ) | 
						
							| 8 | 7 | adantr |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> S e. Grp ) | 
						
							| 9 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 10 | 2 9 | grpidcl |  |-  ( S e. Grp -> ( 0g ` S ) e. ( Base ` S ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` S ) e. ( Base ` S ) ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 13 | 9 12 | ghmid |  |-  ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 15 | 12 | subg0cl |  |-  ( V e. ( SubGrp ` T ) -> ( 0g ` T ) e. V ) | 
						
							| 16 | 15 | adantl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` T ) e. V ) | 
						
							| 17 | 14 16 | eqeltrd |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( F ` ( 0g ` S ) ) e. V ) | 
						
							| 18 | 5 | ffnd |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> F Fn ( Base ` S ) ) | 
						
							| 19 |  | elpreima |  |-  ( F Fn ( Base ` S ) -> ( ( 0g ` S ) e. ( `' F " V ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. V ) ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( 0g ` S ) e. ( `' F " V ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. V ) ) ) | 
						
							| 21 | 11 17 20 | mpbir2and |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( 0g ` S ) e. ( `' F " V ) ) | 
						
							| 22 | 21 | ne0d |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) =/= (/) ) | 
						
							| 23 |  | elpreima |  |-  ( F Fn ( Base ` S ) -> ( a e. ( `' F " V ) <-> ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) ) | 
						
							| 24 | 18 23 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( a e. ( `' F " V ) <-> ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) ) | 
						
							| 25 |  | elpreima |  |-  ( F Fn ( Base ` S ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) | 
						
							| 26 | 18 25 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( b e. ( `' F " V ) <-> ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) | 
						
							| 28 | 7 | ad2antrr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> S e. Grp ) | 
						
							| 29 |  | simprll |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> a e. ( Base ` S ) ) | 
						
							| 30 |  | simprrl |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> b e. ( Base ` S ) ) | 
						
							| 31 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 32 | 2 31 | grpcl |  |-  ( ( S e. Grp /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( a ( +g ` S ) b ) e. ( Base ` S ) ) | 
						
							| 33 | 28 29 30 32 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( a ( +g ` S ) b ) e. ( Base ` S ) ) | 
						
							| 34 |  | simpll |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> F e. ( S GrpHom T ) ) | 
						
							| 35 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 36 | 2 31 35 | ghmlin |  |-  ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) | 
						
							| 37 | 34 29 30 36 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` ( a ( +g ` S ) b ) ) = ( ( F ` a ) ( +g ` T ) ( F ` b ) ) ) | 
						
							| 38 |  | simplr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> V e. ( SubGrp ` T ) ) | 
						
							| 39 |  | simprlr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` a ) e. V ) | 
						
							| 40 |  | simprrr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` b ) e. V ) | 
						
							| 41 | 35 | subgcl |  |-  ( ( V e. ( SubGrp ` T ) /\ ( F ` a ) e. V /\ ( F ` b ) e. V ) -> ( ( F ` a ) ( +g ` T ) ( F ` b ) ) e. V ) | 
						
							| 42 | 38 39 40 41 | syl3anc |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( ( F ` a ) ( +g ` T ) ( F ` b ) ) e. V ) | 
						
							| 43 | 37 42 | eqeltrd |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( F ` ( a ( +g ` S ) b ) ) e. V ) | 
						
							| 44 |  | elpreima |  |-  ( F Fn ( Base ` S ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) | 
						
							| 45 | 18 44 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( ( a ( +g ` S ) b ) e. ( `' F " V ) <-> ( ( a ( +g ` S ) b ) e. ( Base ` S ) /\ ( F ` ( a ( +g ` S ) b ) ) e. V ) ) ) | 
						
							| 47 | 33 43 46 | mpbir2and |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) /\ ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) ) ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) | 
						
							| 48 | 47 | expr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( b e. ( Base ` S ) /\ ( F ` b ) e. V ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) ) | 
						
							| 49 | 27 48 | sylbid |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( b e. ( `' F " V ) -> ( a ( +g ` S ) b ) e. ( `' F " V ) ) ) | 
						
							| 50 | 49 | ralrimiv |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) ) | 
						
							| 51 |  | simprl |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> a e. ( Base ` S ) ) | 
						
							| 52 |  | eqid |  |-  ( invg ` S ) = ( invg ` S ) | 
						
							| 53 | 2 52 | grpinvcl |  |-  ( ( S e. Grp /\ a e. ( Base ` S ) ) -> ( ( invg ` S ) ` a ) e. ( Base ` S ) ) | 
						
							| 54 | 8 51 53 | syl2an2r |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` S ) ` a ) e. ( Base ` S ) ) | 
						
							| 55 |  | eqid |  |-  ( invg ` T ) = ( invg ` T ) | 
						
							| 56 | 2 52 55 | ghminv |  |-  ( ( F e. ( S GrpHom T ) /\ a e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` a ) ) = ( ( invg ` T ) ` ( F ` a ) ) ) | 
						
							| 57 | 56 | ad2ant2r |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( F ` ( ( invg ` S ) ` a ) ) = ( ( invg ` T ) ` ( F ` a ) ) ) | 
						
							| 58 | 55 | subginvcl |  |-  ( ( V e. ( SubGrp ` T ) /\ ( F ` a ) e. V ) -> ( ( invg ` T ) ` ( F ` a ) ) e. V ) | 
						
							| 59 | 58 | ad2ant2l |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` T ) ` ( F ` a ) ) e. V ) | 
						
							| 60 | 57 59 | eqeltrd |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( F ` ( ( invg ` S ) ` a ) ) e. V ) | 
						
							| 61 |  | elpreima |  |-  ( F Fn ( Base ` S ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) | 
						
							| 62 | 18 61 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( ( invg ` S ) ` a ) e. ( `' F " V ) <-> ( ( ( invg ` S ) ` a ) e. ( Base ` S ) /\ ( F ` ( ( invg ` S ) ` a ) ) e. V ) ) ) | 
						
							| 64 | 54 60 63 | mpbir2and |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( ( invg ` S ) ` a ) e. ( `' F " V ) ) | 
						
							| 65 | 50 64 | jca |  |-  ( ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) /\ ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) | 
						
							| 66 | 65 | ex |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( a e. ( Base ` S ) /\ ( F ` a ) e. V ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) | 
						
							| 67 | 24 66 | sylbid |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( a e. ( `' F " V ) -> ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) | 
						
							| 68 | 67 | ralrimiv |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) | 
						
							| 69 | 2 31 52 | issubg2 |  |-  ( S e. Grp -> ( ( `' F " V ) e. ( SubGrp ` S ) <-> ( ( `' F " V ) C_ ( Base ` S ) /\ ( `' F " V ) =/= (/) /\ A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) ) | 
						
							| 70 | 8 69 | syl |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( ( `' F " V ) e. ( SubGrp ` S ) <-> ( ( `' F " V ) C_ ( Base ` S ) /\ ( `' F " V ) =/= (/) /\ A. a e. ( `' F " V ) ( A. b e. ( `' F " V ) ( a ( +g ` S ) b ) e. ( `' F " V ) /\ ( ( invg ` S ) ` a ) e. ( `' F " V ) ) ) ) ) | 
						
							| 71 | 6 22 68 70 | mpbir3and |  |-  ( ( F e. ( S GrpHom T ) /\ V e. ( SubGrp ` T ) ) -> ( `' F " V ) e. ( SubGrp ` S ) ) |