| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmpropd.a |  |-  ( ph -> B = ( Base ` J ) ) | 
						
							| 2 |  | ghmpropd.b |  |-  ( ph -> C = ( Base ` K ) ) | 
						
							| 3 |  | ghmpropd.c |  |-  ( ph -> B = ( Base ` L ) ) | 
						
							| 4 |  | ghmpropd.d |  |-  ( ph -> C = ( Base ` M ) ) | 
						
							| 5 |  | ghmpropd.e |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` J ) y ) = ( x ( +g ` L ) y ) ) | 
						
							| 6 |  | ghmpropd.f |  |-  ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` M ) y ) ) | 
						
							| 7 | 1 3 5 | grppropd |  |-  ( ph -> ( J e. Grp <-> L e. Grp ) ) | 
						
							| 8 | 2 4 6 | grppropd |  |-  ( ph -> ( K e. Grp <-> M e. Grp ) ) | 
						
							| 9 | 7 8 | anbi12d |  |-  ( ph -> ( ( J e. Grp /\ K e. Grp ) <-> ( L e. Grp /\ M e. Grp ) ) ) | 
						
							| 10 | 1 2 3 4 5 6 | mhmpropd |  |-  ( ph -> ( J MndHom K ) = ( L MndHom M ) ) | 
						
							| 11 | 10 | eleq2d |  |-  ( ph -> ( f e. ( J MndHom K ) <-> f e. ( L MndHom M ) ) ) | 
						
							| 12 | 9 11 | anbi12d |  |-  ( ph -> ( ( ( J e. Grp /\ K e. Grp ) /\ f e. ( J MndHom K ) ) <-> ( ( L e. Grp /\ M e. Grp ) /\ f e. ( L MndHom M ) ) ) ) | 
						
							| 13 |  | ghmgrp1 |  |-  ( f e. ( J GrpHom K ) -> J e. Grp ) | 
						
							| 14 |  | ghmgrp2 |  |-  ( f e. ( J GrpHom K ) -> K e. Grp ) | 
						
							| 15 | 13 14 | jca |  |-  ( f e. ( J GrpHom K ) -> ( J e. Grp /\ K e. Grp ) ) | 
						
							| 16 |  | ghmmhmb |  |-  ( ( J e. Grp /\ K e. Grp ) -> ( J GrpHom K ) = ( J MndHom K ) ) | 
						
							| 17 | 16 | eleq2d |  |-  ( ( J e. Grp /\ K e. Grp ) -> ( f e. ( J GrpHom K ) <-> f e. ( J MndHom K ) ) ) | 
						
							| 18 | 15 17 | biadanii |  |-  ( f e. ( J GrpHom K ) <-> ( ( J e. Grp /\ K e. Grp ) /\ f e. ( J MndHom K ) ) ) | 
						
							| 19 |  | ghmgrp1 |  |-  ( f e. ( L GrpHom M ) -> L e. Grp ) | 
						
							| 20 |  | ghmgrp2 |  |-  ( f e. ( L GrpHom M ) -> M e. Grp ) | 
						
							| 21 | 19 20 | jca |  |-  ( f e. ( L GrpHom M ) -> ( L e. Grp /\ M e. Grp ) ) | 
						
							| 22 |  | ghmmhmb |  |-  ( ( L e. Grp /\ M e. Grp ) -> ( L GrpHom M ) = ( L MndHom M ) ) | 
						
							| 23 | 22 | eleq2d |  |-  ( ( L e. Grp /\ M e. Grp ) -> ( f e. ( L GrpHom M ) <-> f e. ( L MndHom M ) ) ) | 
						
							| 24 | 21 23 | biadanii |  |-  ( f e. ( L GrpHom M ) <-> ( ( L e. Grp /\ M e. Grp ) /\ f e. ( L MndHom M ) ) ) | 
						
							| 25 | 12 18 24 | 3bitr4g |  |-  ( ph -> ( f e. ( J GrpHom K ) <-> f e. ( L GrpHom M ) ) ) | 
						
							| 26 | 25 | eqrdv |  |-  ( ph -> ( J GrpHom K ) = ( L GrpHom M ) ) |