Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
|- .0. = ( 0g ` H ) |
2 |
|
ghmqusker.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
3 |
|
ghmqusker.k |
|- K = ( `' F " { .0. } ) |
4 |
|
ghmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
5 |
|
ghmqusker.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
ghmquskerlem2.y |
|- ( ph -> Y e. ( Base ` Q ) ) |
7 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
8 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
9 |
|
ovexd |
|- ( ph -> ( G ~QG K ) e. _V ) |
10 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
11 |
2 10
|
syl |
|- ( ph -> G e. Grp ) |
12 |
7 8 9 11
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
13 |
6 12
|
eleqtrrd |
|- ( ph -> Y e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
14 |
|
elqsg |
|- ( Y e. ( Base ` Q ) -> ( Y e. ( ( Base ` G ) /. ( G ~QG K ) ) <-> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) ) ) |
15 |
14
|
biimpa |
|- ( ( Y e. ( Base ` Q ) /\ Y e. ( ( Base ` G ) /. ( G ~QG K ) ) ) -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) ) |
16 |
6 13 15
|
syl2anc |
|- ( ph -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) ) |
17 |
1
|
ghmker |
|- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
18 |
|
nsgsubg |
|- ( ( `' F " { .0. } ) e. ( NrmSGrp ` G ) -> ( `' F " { .0. } ) e. ( SubGrp ` G ) ) |
19 |
2 17 18
|
3syl |
|- ( ph -> ( `' F " { .0. } ) e. ( SubGrp ` G ) ) |
20 |
3 19
|
eqeltrid |
|- ( ph -> K e. ( SubGrp ` G ) ) |
21 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
22 |
|
eqid |
|- ( G ~QG K ) = ( G ~QG K ) |
23 |
21 22
|
eqger |
|- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
24 |
20 23
|
syl |
|- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
25 |
24
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( G ~QG K ) Er ( Base ` G ) ) |
26 |
|
simplr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> x e. ( Base ` G ) ) |
27 |
|
ecref |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ x e. ( Base ` G ) ) -> x e. [ x ] ( G ~QG K ) ) |
28 |
25 26 27
|
syl2anc |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> x e. [ x ] ( G ~QG K ) ) |
29 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> Y = [ x ] ( G ~QG K ) ) |
30 |
28 29
|
eleqtrrd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> x e. Y ) |
31 |
29
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( J ` Y ) = ( J ` [ x ] ( G ~QG K ) ) ) |
32 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> F e. ( G GrpHom H ) ) |
33 |
1 32 3 4 5 26
|
ghmquskerlem1 |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
34 |
31 33
|
eqtrd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( J ` Y ) = ( F ` x ) ) |
35 |
30 34
|
jca |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG K ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) |
36 |
35
|
expl |
|- ( ph -> ( ( x e. ( Base ` G ) /\ Y = [ x ] ( G ~QG K ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) ) |
37 |
36
|
reximdv2 |
|- ( ph -> ( E. x e. ( Base ` G ) Y = [ x ] ( G ~QG K ) -> E. x e. Y ( J ` Y ) = ( F ` x ) ) ) |
38 |
16 37
|
mpd |
|- ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) ) |