Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
|- .0. = ( 0g ` H ) |
2 |
|
ghmqusker.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
3 |
|
ghmqusker.k |
|- K = ( `' F " { .0. } ) |
4 |
|
ghmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
5 |
|
ghmqusker.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
7 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
8 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
9 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
10 |
1
|
ghmker |
|- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
11 |
2 10
|
syl |
|- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
12 |
3 11
|
eqeltrid |
|- ( ph -> K e. ( NrmSGrp ` G ) ) |
13 |
4
|
qusgrp |
|- ( K e. ( NrmSGrp ` G ) -> Q e. Grp ) |
14 |
12 13
|
syl |
|- ( ph -> Q e. Grp ) |
15 |
|
ghmrn |
|- ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) ) |
16 |
|
subgrcl |
|- ( ran F e. ( SubGrp ` H ) -> H e. Grp ) |
17 |
2 15 16
|
3syl |
|- ( ph -> H e. Grp ) |
18 |
2
|
adantr |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
19 |
18
|
imaexd |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> ( F " q ) e. _V ) |
20 |
19
|
uniexd |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> U. ( F " q ) e. _V ) |
21 |
5
|
a1i |
|- ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) |
22 |
|
simpr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) ) |
23 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
24 |
23 7
|
ghmf |
|- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
25 |
2 24
|
syl |
|- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
26 |
25
|
frnd |
|- ( ph -> ran F C_ ( Base ` H ) ) |
27 |
26
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ran F C_ ( Base ` H ) ) |
28 |
25
|
ffnd |
|- ( ph -> F Fn ( Base ` G ) ) |
29 |
28
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F Fn ( Base ` G ) ) |
30 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
31 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
32 |
|
ovexd |
|- ( ph -> ( G ~QG K ) e. _V ) |
33 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
34 |
2 33
|
syl |
|- ( ph -> G e. Grp ) |
35 |
30 31 32 34
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
36 |
|
nsgsubg |
|- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
37 |
|
eqid |
|- ( G ~QG K ) = ( G ~QG K ) |
38 |
23 37
|
eqger |
|- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
39 |
12 36 38
|
3syl |
|- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
40 |
39
|
qsss |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) C_ ~P ( Base ` G ) ) |
41 |
35 40
|
eqsstrrd |
|- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
42 |
41
|
sselda |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
43 |
42
|
elpwid |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
44 |
43
|
sselda |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) -> x e. ( Base ` G ) ) |
45 |
44
|
adantr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) ) |
46 |
29 45
|
fnfvelrnd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ran F ) |
47 |
27 46
|
sseldd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ( Base ` H ) ) |
48 |
22 47
|
eqeltrd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) e. ( Base ` H ) ) |
49 |
2
|
adantr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
50 |
|
simpr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
51 |
1 49 3 4 5 50
|
ghmquskerlem2 |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
52 |
48 51
|
r19.29a |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> ( J ` r ) e. ( Base ` H ) ) |
53 |
20 21 52
|
fmpt2d |
|- ( ph -> J : ( Base ` Q ) --> ( Base ` H ) ) |
54 |
39
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG K ) Er ( Base ` G ) ) |
55 |
50
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) ) |
56 |
35
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
57 |
55 56
|
eleqtrrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
58 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r ) |
59 |
|
qsel |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ x e. r ) -> r = [ x ] ( G ~QG K ) ) |
60 |
54 57 58 59
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG K ) ) |
61 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) ) |
62 |
61 56
|
eleqtrrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
63 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s ) |
64 |
|
qsel |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ y e. s ) -> s = [ y ] ( G ~QG K ) ) |
65 |
54 62 63 64
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG K ) ) |
66 |
60 65
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = ( [ x ] ( G ~QG K ) ( +g ` Q ) [ y ] ( G ~QG K ) ) ) |
67 |
12
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> K e. ( NrmSGrp ` G ) ) |
68 |
43
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) ) |
69 |
68 58
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) ) |
70 |
41
|
sselda |
|- ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) ) |
71 |
70
|
elpwid |
|- ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
72 |
71
|
adantlr |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
73 |
72
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) ) |
74 |
73 63
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) ) |
75 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
76 |
4 23 75 8
|
qusadd |
|- ( ( K e. ( NrmSGrp ` G ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( [ x ] ( G ~QG K ) ( +g ` Q ) [ y ] ( G ~QG K ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) |
77 |
67 69 74 76
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG K ) ( +g ` Q ) [ y ] ( G ~QG K ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) |
78 |
66 77
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) |
79 |
78
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) ) |
80 |
2
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) ) |
81 |
80 33
|
syl |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Grp ) |
82 |
23 75 81 69 74
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
83 |
1 80 3 4 5 82
|
ghmquskerlem1 |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG K ) ) = ( F ` ( x ( +g ` G ) y ) ) ) |
84 |
23 75 9
|
ghmlin |
|- ( ( F e. ( G GrpHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
85 |
80 69 74 84
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
86 |
79 83 85
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
87 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) ) |
88 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) ) |
89 |
87 88
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( +g ` H ) ( J ` s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
90 |
86 89
|
eqtr4d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
91 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) |
92 |
|
simpllr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) ) |
93 |
1 91 3 4 5 92
|
ghmquskerlem2 |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) ) |
94 |
90 93
|
r19.29a |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
95 |
51
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
96 |
94 95
|
r19.29a |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
97 |
96
|
anasss |
|- ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
98 |
6 7 8 9 14 17 53 97
|
isghmd |
|- ( ph -> J e. ( Q GrpHom H ) ) |