| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ghmqusnsg.0 | 
							 |-  .0. = ( 0g ` H )  | 
						
						
							| 2 | 
							
								
							 | 
							ghmqusnsg.f | 
							 |-  ( ph -> F e. ( G GrpHom H ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ghmqusnsg.k | 
							 |-  K = ( `' F " { .0. } ) | 
						
						
							| 4 | 
							
								
							 | 
							ghmqusnsg.q | 
							 |-  Q = ( G /s ( G ~QG N ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ghmqusnsg.j | 
							 |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ghmqusnsg.n | 
							 |-  ( ph -> N C_ K )  | 
						
						
							| 7 | 
							
								
							 | 
							ghmqusnsg.1 | 
							 |-  ( ph -> N e. ( NrmSGrp ` G ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` Q ) = ( Base ` Q )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` H ) = ( Base ` H )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` Q ) = ( +g ` Q )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` H ) = ( +g ` H )  | 
						
						
							| 12 | 
							
								4
							 | 
							qusgrp | 
							 |-  ( N e. ( NrmSGrp ` G ) -> Q e. Grp )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							syl | 
							 |-  ( ph -> Q e. Grp )  | 
						
						
							| 14 | 
							
								
							 | 
							ghmrn | 
							 |-  ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) )  | 
						
						
							| 15 | 
							
								
							 | 
							subgrcl | 
							 |-  ( ran F e. ( SubGrp ` H ) -> H e. Grp )  | 
						
						
							| 16 | 
							
								2 14 15
							 | 
							3syl | 
							 |-  ( ph -> H e. Grp )  | 
						
						
							| 17 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ q e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imaexd | 
							 |-  ( ( ph /\ q e. ( Base ` Q ) ) -> ( F " q ) e. _V )  | 
						
						
							| 19 | 
							
								18
							 | 
							uniexd | 
							 |-  ( ( ph /\ q e. ( Base ` Q ) ) -> U. ( F " q ) e. _V )  | 
						
						
							| 20 | 
							
								5
							 | 
							a1i | 
							 |-  ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 23 | 
							
								22 9
							 | 
							ghmf | 
							 |-  ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) )  | 
						
						
							| 24 | 
							
								2 23
							 | 
							syl | 
							 |-  ( ph -> F : ( Base ` G ) --> ( Base ` H ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							frnd | 
							 |-  ( ph -> ran F C_ ( Base ` H ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ran F C_ ( Base ` H ) )  | 
						
						
							| 27 | 
							
								24
							 | 
							ffnd | 
							 |-  ( ph -> F Fn ( Base ` G ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F Fn ( Base ` G ) )  | 
						
						
							| 29 | 
							
								4
							 | 
							a1i | 
							 |-  ( ph -> Q = ( G /s ( G ~QG N ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( Base ` G ) = ( Base ` G ) )  | 
						
						
							| 31 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( G ~QG N ) e. _V )  | 
						
						
							| 32 | 
							
								
							 | 
							ghmgrp1 | 
							 |-  ( F e. ( G GrpHom H ) -> G e. Grp )  | 
						
						
							| 33 | 
							
								2 32
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 34 | 
							
								29 30 31 33
							 | 
							qusbas | 
							 |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) )  | 
						
						
							| 35 | 
							
								
							 | 
							nsgsubg | 
							 |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) )  | 
						
						
							| 36 | 
							
								
							 | 
							eqid | 
							 |-  ( G ~QG N ) = ( G ~QG N )  | 
						
						
							| 37 | 
							
								22 36
							 | 
							eqger | 
							 |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 38 | 
							
								7 35 37
							 | 
							3syl | 
							 |-  ( ph -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							qsss | 
							 |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) C_ ~P ( Base ` G ) )  | 
						
						
							| 40 | 
							
								34 39
							 | 
							eqsstrrd | 
							 |-  ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							sselda | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							elpwid | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							sselda | 
							 |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) -> x e. ( Base ` G ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) )  | 
						
						
							| 45 | 
							
								28 44
							 | 
							fnfvelrnd | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ran F )  | 
						
						
							| 46 | 
							
								26 45
							 | 
							sseldd | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ( Base ` H ) )  | 
						
						
							| 47 | 
							
								21 46
							 | 
							eqeltrd | 
							 |-  ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) e. ( Base ` H ) )  | 
						
						
							| 48 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) )  | 
						
						
							| 49 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> N C_ K )  | 
						
						
							| 50 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> N e. ( NrmSGrp ` G ) )  | 
						
						
							| 51 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) )  | 
						
						
							| 52 | 
							
								1 48 3 4 5 49 50 51
							 | 
							ghmqusnsglem2 | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) )  | 
						
						
							| 53 | 
							
								47 52
							 | 
							r19.29a | 
							 |-  ( ( ph /\ r e. ( Base ` Q ) ) -> ( J ` r ) e. ( Base ` H ) )  | 
						
						
							| 54 | 
							
								19 20 53
							 | 
							fmpt2d | 
							 |-  ( ph -> J : ( Base ` Q ) --> ( Base ` H ) )  | 
						
						
							| 55 | 
							
								38
							 | 
							ad6antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 56 | 
							
								51
							 | 
							ad5antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) )  | 
						
						
							| 57 | 
							
								34
							 | 
							ad6antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG N ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							simp-4r | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r )  | 
						
						
							| 60 | 
							
								
							 | 
							qsel | 
							 |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ x e. r ) -> r = [ x ] ( G ~QG N ) )  | 
						
						
							| 61 | 
							
								55 58 59 60
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG N ) )  | 
						
						
							| 62 | 
							
								
							 | 
							simp-5r | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) )  | 
						
						
							| 63 | 
							
								62 57
							 | 
							eleqtrrd | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG N ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s )  | 
						
						
							| 65 | 
							
								
							 | 
							qsel | 
							 |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ y e. s ) -> s = [ y ] ( G ~QG N ) )  | 
						
						
							| 66 | 
							
								55 63 64 65
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG N ) )  | 
						
						
							| 67 | 
							
								61 66
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) )  | 
						
						
							| 68 | 
							
								7
							 | 
							ad6antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N e. ( NrmSGrp ` G ) )  | 
						
						
							| 69 | 
							
								42
							 | 
							ad5antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) )  | 
						
						
							| 70 | 
							
								69 59
							 | 
							sseldd | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) )  | 
						
						
							| 71 | 
							
								40
							 | 
							sselda | 
							 |-  ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							elpwid | 
							 |-  ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) )  | 
						
						
							| 75 | 
							
								74 64
							 | 
							sseldd | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) )  | 
						
						
							| 76 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` G ) = ( +g ` G )  | 
						
						
							| 77 | 
							
								4 22 76 10
							 | 
							qusadd | 
							 |-  ( ( N e. ( NrmSGrp ` G ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) )  | 
						
						
							| 78 | 
							
								68 70 75 77
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) )  | 
						
						
							| 79 | 
							
								67 78
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							fveq2d | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) )  | 
						
						
							| 81 | 
							
								2
							 | 
							ad6antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) )  | 
						
						
							| 82 | 
							
								6
							 | 
							ad6antr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N C_ K )  | 
						
						
							| 83 | 
							
								81 32
							 | 
							syl | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Grp )  | 
						
						
							| 84 | 
							
								22 76 83 70 75
							 | 
							grpcld | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) )  | 
						
						
							| 85 | 
							
								1 81 3 4 5 82 68 84
							 | 
							ghmqusnsglem1 | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) = ( F ` ( x ( +g ` G ) y ) ) )  | 
						
						
							| 86 | 
							
								22 76 11
							 | 
							ghmlin | 
							 |-  ( ( F e. ( G GrpHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) )  | 
						
						
							| 87 | 
							
								81 70 75 86
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) )  | 
						
						
							| 88 | 
							
								80 85 87
							 | 
							3eqtrd | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) )  | 
						
						
							| 90 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) )  | 
						
						
							| 91 | 
							
								89 90
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( +g ` H ) ( J ` s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) )  | 
						
						
							| 92 | 
							
								88 91
							 | 
							eqtr4d | 
							 |-  ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) )  | 
						
						
							| 93 | 
							
								2
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) )  | 
						
						
							| 94 | 
							
								6
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N C_ K )  | 
						
						
							| 95 | 
							
								7
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N e. ( NrmSGrp ` G ) )  | 
						
						
							| 96 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) )  | 
						
						
							| 97 | 
							
								1 93 3 4 5 94 95 96
							 | 
							ghmqusnsglem2 | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) )  | 
						
						
							| 98 | 
							
								92 97
							 | 
							r19.29a | 
							 |-  ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) )  | 
						
						
							| 99 | 
							
								52
							 | 
							adantr | 
							 |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) )  | 
						
						
							| 100 | 
							
								98 99
							 | 
							r19.29a | 
							 |-  ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							anasss | 
							 |-  ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) )  | 
						
						
							| 102 | 
							
								8 9 10 11 13 16 54 101
							 | 
							isghmd | 
							 |-  ( ph -> J e. ( Q GrpHom H ) )  |