Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusnsg.0 |
|- .0. = ( 0g ` H ) |
2 |
|
ghmqusnsg.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
3 |
|
ghmqusnsg.k |
|- K = ( `' F " { .0. } ) |
4 |
|
ghmqusnsg.q |
|- Q = ( G /s ( G ~QG N ) ) |
5 |
|
ghmqusnsg.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
ghmqusnsg.n |
|- ( ph -> N C_ K ) |
7 |
|
ghmqusnsg.1 |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
8 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
9 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
10 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
11 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
12 |
4
|
qusgrp |
|- ( N e. ( NrmSGrp ` G ) -> Q e. Grp ) |
13 |
7 12
|
syl |
|- ( ph -> Q e. Grp ) |
14 |
|
ghmrn |
|- ( F e. ( G GrpHom H ) -> ran F e. ( SubGrp ` H ) ) |
15 |
|
subgrcl |
|- ( ran F e. ( SubGrp ` H ) -> H e. Grp ) |
16 |
2 14 15
|
3syl |
|- ( ph -> H e. Grp ) |
17 |
2
|
adantr |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
18 |
17
|
imaexd |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> ( F " q ) e. _V ) |
19 |
18
|
uniexd |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> U. ( F " q ) e. _V ) |
20 |
5
|
a1i |
|- ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) |
21 |
|
simpr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) ) |
22 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
23 |
22 9
|
ghmf |
|- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
24 |
2 23
|
syl |
|- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
25 |
24
|
frnd |
|- ( ph -> ran F C_ ( Base ` H ) ) |
26 |
25
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ran F C_ ( Base ` H ) ) |
27 |
24
|
ffnd |
|- ( ph -> F Fn ( Base ` G ) ) |
28 |
27
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F Fn ( Base ` G ) ) |
29 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG N ) ) ) |
30 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
31 |
|
ovexd |
|- ( ph -> ( G ~QG N ) e. _V ) |
32 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
33 |
2 32
|
syl |
|- ( ph -> G e. Grp ) |
34 |
29 30 31 33
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) |
35 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
36 |
|
eqid |
|- ( G ~QG N ) = ( G ~QG N ) |
37 |
22 36
|
eqger |
|- ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) |
38 |
7 35 37
|
3syl |
|- ( ph -> ( G ~QG N ) Er ( Base ` G ) ) |
39 |
38
|
qsss |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) C_ ~P ( Base ` G ) ) |
40 |
34 39
|
eqsstrrd |
|- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
41 |
40
|
sselda |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
42 |
41
|
elpwid |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
43 |
42
|
sselda |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) -> x e. ( Base ` G ) ) |
44 |
43
|
adantr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) ) |
45 |
28 44
|
fnfvelrnd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ran F ) |
46 |
26 45
|
sseldd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ( Base ` H ) ) |
47 |
21 46
|
eqeltrd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) e. ( Base ` H ) ) |
48 |
2
|
adantr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
49 |
6
|
adantr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> N C_ K ) |
50 |
7
|
adantr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> N e. ( NrmSGrp ` G ) ) |
51 |
|
simpr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
52 |
1 48 3 4 5 49 50 51
|
ghmqusnsglem2 |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
53 |
47 52
|
r19.29a |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> ( J ` r ) e. ( Base ` H ) ) |
54 |
19 20 53
|
fmpt2d |
|- ( ph -> J : ( Base ` Q ) --> ( Base ` H ) ) |
55 |
38
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG N ) Er ( Base ` G ) ) |
56 |
51
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) ) |
57 |
34
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) |
58 |
56 57
|
eleqtrrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
59 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r ) |
60 |
|
qsel |
|- ( ( ( G ~QG N ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ x e. r ) -> r = [ x ] ( G ~QG N ) ) |
61 |
55 58 59 60
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG N ) ) |
62 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) ) |
63 |
62 57
|
eleqtrrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
64 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s ) |
65 |
|
qsel |
|- ( ( ( G ~QG N ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ y e. s ) -> s = [ y ] ( G ~QG N ) ) |
66 |
55 63 64 65
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG N ) ) |
67 |
61 66
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) ) |
68 |
7
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N e. ( NrmSGrp ` G ) ) |
69 |
42
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) ) |
70 |
69 59
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) ) |
71 |
40
|
sselda |
|- ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) ) |
72 |
71
|
elpwid |
|- ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
73 |
72
|
adantlr |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
74 |
73
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) ) |
75 |
74 64
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) ) |
76 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
77 |
4 22 76 10
|
qusadd |
|- ( ( N e. ( NrmSGrp ` G ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) |
78 |
68 70 75 77
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG N ) ( +g ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) |
79 |
67 78
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( +g ` Q ) s ) = [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) |
80 |
79
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) ) |
81 |
2
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) ) |
82 |
6
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N C_ K ) |
83 |
81 32
|
syl |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Grp ) |
84 |
22 76 83 70 75
|
grpcld |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
85 |
1 81 3 4 5 82 68 84
|
ghmqusnsglem1 |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( +g ` G ) y ) ] ( G ~QG N ) ) = ( F ` ( x ( +g ` G ) y ) ) ) |
86 |
22 76 11
|
ghmlin |
|- ( ( F e. ( G GrpHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
87 |
81 70 75 86
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( +g ` G ) y ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
88 |
80 85 87
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
89 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) ) |
90 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) ) |
91 |
89 90
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( +g ` H ) ( J ` s ) ) = ( ( F ` x ) ( +g ` H ) ( F ` y ) ) ) |
92 |
88 91
|
eqtr4d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
93 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) |
94 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N C_ K ) |
95 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N e. ( NrmSGrp ` G ) ) |
96 |
|
simpllr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) ) |
97 |
1 93 3 4 5 94 95 96
|
ghmqusnsglem2 |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) ) |
98 |
92 97
|
r19.29a |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
99 |
52
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
100 |
98 99
|
r19.29a |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
101 |
100
|
anasss |
|- ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( +g ` Q ) s ) ) = ( ( J ` r ) ( +g ` H ) ( J ` s ) ) ) |
102 |
8 9 10 11 13 16 54 101
|
isghmd |
|- ( ph -> J e. ( Q GrpHom H ) ) |