Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusnsg.0 |
|- .0. = ( 0g ` H ) |
2 |
|
ghmqusnsg.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
3 |
|
ghmqusnsg.k |
|- K = ( `' F " { .0. } ) |
4 |
|
ghmqusnsg.q |
|- Q = ( G /s ( G ~QG N ) ) |
5 |
|
ghmqusnsg.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
ghmqusnsg.n |
|- ( ph -> N C_ K ) |
7 |
|
ghmqusnsg.1 |
|- ( ph -> N e. ( NrmSGrp ` G ) ) |
8 |
|
ghmqusnsglem1.x |
|- ( ph -> X e. ( Base ` G ) ) |
9 |
|
imaeq2 |
|- ( q = [ X ] ( G ~QG N ) -> ( F " q ) = ( F " [ X ] ( G ~QG N ) ) ) |
10 |
9
|
unieqd |
|- ( q = [ X ] ( G ~QG N ) -> U. ( F " q ) = U. ( F " [ X ] ( G ~QG N ) ) ) |
11 |
|
ovex |
|- ( G ~QG N ) e. _V |
12 |
11
|
ecelqsi |
|- ( X e. ( Base ` G ) -> [ X ] ( G ~QG N ) e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
13 |
8 12
|
syl |
|- ( ph -> [ X ] ( G ~QG N ) e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
14 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG N ) ) ) |
15 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
16 |
|
ovexd |
|- ( ph -> ( G ~QG N ) e. _V ) |
17 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
18 |
2 17
|
syl |
|- ( ph -> G e. Grp ) |
19 |
14 15 16 18
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) |
20 |
13 19
|
eleqtrd |
|- ( ph -> [ X ] ( G ~QG N ) e. ( Base ` Q ) ) |
21 |
2
|
imaexd |
|- ( ph -> ( F " [ X ] ( G ~QG N ) ) e. _V ) |
22 |
21
|
uniexd |
|- ( ph -> U. ( F " [ X ] ( G ~QG N ) ) e. _V ) |
23 |
5 10 20 22
|
fvmptd3 |
|- ( ph -> ( J ` [ X ] ( G ~QG N ) ) = U. ( F " [ X ] ( G ~QG N ) ) ) |
24 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
25 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
26 |
24 25
|
ghmf |
|- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
27 |
2 26
|
syl |
|- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
28 |
27
|
ffnd |
|- ( ph -> F Fn ( Base ` G ) ) |
29 |
|
nsgsubg |
|- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
30 |
|
eqid |
|- ( G ~QG N ) = ( G ~QG N ) |
31 |
24 30
|
eqger |
|- ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) |
32 |
7 29 31
|
3syl |
|- ( ph -> ( G ~QG N ) Er ( Base ` G ) ) |
33 |
32
|
ecss |
|- ( ph -> [ X ] ( G ~QG N ) C_ ( Base ` G ) ) |
34 |
28 33
|
fvelimabd |
|- ( ph -> ( y e. ( F " [ X ] ( G ~QG N ) ) <-> E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) ) |
35 |
|
simpr |
|- ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = y ) |
36 |
2
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F e. ( G GrpHom H ) ) |
37 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
38 |
36 17
|
syl |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> G e. Grp ) |
39 |
8
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> X e. ( Base ` G ) ) |
40 |
24 37 38 39
|
grpinvcld |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( invg ` G ) ` X ) e. ( Base ` G ) ) |
41 |
33
|
sselda |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> z e. ( Base ` G ) ) |
42 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
43 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
44 |
24 42 43
|
ghmlin |
|- ( ( F e. ( G GrpHom H ) /\ ( ( invg ` G ) ` X ) e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
45 |
36 40 41 44
|
syl3anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
46 |
28
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F Fn ( Base ` G ) ) |
47 |
6 3
|
sseqtrdi |
|- ( ph -> N C_ ( `' F " { .0. } ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> N C_ ( `' F " { .0. } ) ) |
49 |
24
|
subgss |
|- ( N e. ( SubGrp ` G ) -> N C_ ( Base ` G ) ) |
50 |
7 29 49
|
3syl |
|- ( ph -> N C_ ( Base ` G ) ) |
51 |
50
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> N C_ ( Base ` G ) ) |
52 |
|
vex |
|- z e. _V |
53 |
|
elecg |
|- ( ( z e. _V /\ X e. ( Base ` G ) ) -> ( z e. [ X ] ( G ~QG N ) <-> X ( G ~QG N ) z ) ) |
54 |
52 53
|
mpan |
|- ( X e. ( Base ` G ) -> ( z e. [ X ] ( G ~QG N ) <-> X ( G ~QG N ) z ) ) |
55 |
54
|
biimpa |
|- ( ( X e. ( Base ` G ) /\ z e. [ X ] ( G ~QG N ) ) -> X ( G ~QG N ) z ) |
56 |
8 55
|
sylan |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> X ( G ~QG N ) z ) |
57 |
24 37 42 30
|
eqgval |
|- ( ( G e. Grp /\ N C_ ( Base ` G ) ) -> ( X ( G ~QG N ) z <-> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) ) ) |
58 |
57
|
biimpa |
|- ( ( ( G e. Grp /\ N C_ ( Base ` G ) ) /\ X ( G ~QG N ) z ) -> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) ) |
59 |
58
|
simp3d |
|- ( ( ( G e. Grp /\ N C_ ( Base ` G ) ) /\ X ( G ~QG N ) z ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) |
60 |
38 51 56 59
|
syl21anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) |
61 |
48 60
|
sseldd |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) |
62 |
|
fniniseg |
|- ( F Fn ( Base ` G ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) <-> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) ) |
63 |
62
|
biimpa |
|- ( ( F Fn ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) |
64 |
46 61 63
|
syl2anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) |
65 |
64
|
simprd |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) |
66 |
45 65
|
eqtr3d |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = .0. ) |
67 |
66
|
oveq2d |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) .0. ) ) |
68 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
69 |
24 37 68
|
ghminv |
|- ( ( F e. ( G GrpHom H ) /\ X e. ( Base ` G ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) |
70 |
36 39 69
|
syl2anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) |
71 |
70
|
oveq1d |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
72 |
71
|
oveq2d |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) ) |
73 |
|
ghmgrp2 |
|- ( F e. ( G GrpHom H ) -> H e. Grp ) |
74 |
36 73
|
syl |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> H e. Grp ) |
75 |
36 26
|
syl |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
76 |
75 39
|
ffvelcdmd |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` X ) e. ( Base ` H ) ) |
77 |
75 41
|
ffvelcdmd |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` z ) e. ( Base ` H ) ) |
78 |
25 43 68
|
grpasscan1 |
|- ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
79 |
74 76 77 78
|
syl3anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
80 |
72 79
|
eqtrd |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
81 |
25 43 1 74 76
|
grpridd |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) ) |
82 |
67 80 81
|
3eqtr3d |
|- ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` z ) = ( F ` X ) ) |
83 |
82
|
adantr |
|- ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = ( F ` X ) ) |
84 |
35 83
|
eqtr3d |
|- ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> y = ( F ` X ) ) |
85 |
84
|
r19.29an |
|- ( ( ph /\ E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) -> y = ( F ` X ) ) |
86 |
|
fveqeq2 |
|- ( z = X -> ( ( F ` z ) = y <-> ( F ` X ) = y ) ) |
87 |
|
ecref |
|- ( ( ( G ~QG N ) Er ( Base ` G ) /\ X e. ( Base ` G ) ) -> X e. [ X ] ( G ~QG N ) ) |
88 |
32 8 87
|
syl2anc |
|- ( ph -> X e. [ X ] ( G ~QG N ) ) |
89 |
88
|
adantr |
|- ( ( ph /\ y = ( F ` X ) ) -> X e. [ X ] ( G ~QG N ) ) |
90 |
|
simpr |
|- ( ( ph /\ y = ( F ` X ) ) -> y = ( F ` X ) ) |
91 |
90
|
eqcomd |
|- ( ( ph /\ y = ( F ` X ) ) -> ( F ` X ) = y ) |
92 |
86 89 91
|
rspcedvdw |
|- ( ( ph /\ y = ( F ` X ) ) -> E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) |
93 |
85 92
|
impbida |
|- ( ph -> ( E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y <-> y = ( F ` X ) ) ) |
94 |
|
velsn |
|- ( y e. { ( F ` X ) } <-> y = ( F ` X ) ) |
95 |
93 94
|
bitr4di |
|- ( ph -> ( E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y <-> y e. { ( F ` X ) } ) ) |
96 |
34 95
|
bitrd |
|- ( ph -> ( y e. ( F " [ X ] ( G ~QG N ) ) <-> y e. { ( F ` X ) } ) ) |
97 |
96
|
eqrdv |
|- ( ph -> ( F " [ X ] ( G ~QG N ) ) = { ( F ` X ) } ) |
98 |
97
|
unieqd |
|- ( ph -> U. ( F " [ X ] ( G ~QG N ) ) = U. { ( F ` X ) } ) |
99 |
|
fvex |
|- ( F ` X ) e. _V |
100 |
99
|
unisn |
|- U. { ( F ` X ) } = ( F ` X ) |
101 |
98 100
|
eqtrdi |
|- ( ph -> U. ( F " [ X ] ( G ~QG N ) ) = ( F ` X ) ) |
102 |
23 101
|
eqtrd |
|- ( ph -> ( J ` [ X ] ( G ~QG N ) ) = ( F ` X ) ) |