| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ghmqusnsg.0 | 
							 |-  .0. = ( 0g ` H )  | 
						
						
							| 2 | 
							
								
							 | 
							ghmqusnsg.f | 
							 |-  ( ph -> F e. ( G GrpHom H ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ghmqusnsg.k | 
							 |-  K = ( `' F " { .0. } ) | 
						
						
							| 4 | 
							
								
							 | 
							ghmqusnsg.q | 
							 |-  Q = ( G /s ( G ~QG N ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ghmqusnsg.j | 
							 |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ghmqusnsg.n | 
							 |-  ( ph -> N C_ K )  | 
						
						
							| 7 | 
							
								
							 | 
							ghmqusnsg.1 | 
							 |-  ( ph -> N e. ( NrmSGrp ` G ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ghmqusnsglem1.x | 
							 |-  ( ph -> X e. ( Base ` G ) )  | 
						
						
							| 9 | 
							
								
							 | 
							imaeq2 | 
							 |-  ( q = [ X ] ( G ~QG N ) -> ( F " q ) = ( F " [ X ] ( G ~QG N ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							unieqd | 
							 |-  ( q = [ X ] ( G ~QG N ) -> U. ( F " q ) = U. ( F " [ X ] ( G ~QG N ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ovex | 
							 |-  ( G ~QG N ) e. _V  | 
						
						
							| 12 | 
							
								11
							 | 
							ecelqsi | 
							 |-  ( X e. ( Base ` G ) -> [ X ] ( G ~QG N ) e. ( ( Base ` G ) /. ( G ~QG N ) ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							syl | 
							 |-  ( ph -> [ X ] ( G ~QG N ) e. ( ( Base ` G ) /. ( G ~QG N ) ) )  | 
						
						
							| 14 | 
							
								4
							 | 
							a1i | 
							 |-  ( ph -> Q = ( G /s ( G ~QG N ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( Base ` G ) = ( Base ` G ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( G ~QG N ) e. _V )  | 
						
						
							| 17 | 
							
								
							 | 
							ghmgrp1 | 
							 |-  ( F e. ( G GrpHom H ) -> G e. Grp )  | 
						
						
							| 18 | 
							
								2 17
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 19 | 
							
								14 15 16 18
							 | 
							qusbas | 
							 |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							eleqtrd | 
							 |-  ( ph -> [ X ] ( G ~QG N ) e. ( Base ` Q ) )  | 
						
						
							| 21 | 
							
								2
							 | 
							imaexd | 
							 |-  ( ph -> ( F " [ X ] ( G ~QG N ) ) e. _V )  | 
						
						
							| 22 | 
							
								21
							 | 
							uniexd | 
							 |-  ( ph -> U. ( F " [ X ] ( G ~QG N ) ) e. _V )  | 
						
						
							| 23 | 
							
								5 10 20 22
							 | 
							fvmptd3 | 
							 |-  ( ph -> ( J ` [ X ] ( G ~QG N ) ) = U. ( F " [ X ] ( G ~QG N ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` H ) = ( Base ` H )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							ghmf | 
							 |-  ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							syl | 
							 |-  ( ph -> F : ( Base ` G ) --> ( Base ` H ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ffnd | 
							 |-  ( ph -> F Fn ( Base ` G ) )  | 
						
						
							| 29 | 
							
								
							 | 
							nsgsubg | 
							 |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  ( G ~QG N ) = ( G ~QG N )  | 
						
						
							| 31 | 
							
								24 30
							 | 
							eqger | 
							 |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 32 | 
							
								7 29 31
							 | 
							3syl | 
							 |-  ( ph -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ecss | 
							 |-  ( ph -> [ X ] ( G ~QG N ) C_ ( Base ` G ) )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							fvelimabd | 
							 |-  ( ph -> ( y e. ( F " [ X ] ( G ~QG N ) ) <-> E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = y )  | 
						
						
							| 36 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F e. ( G GrpHom H ) )  | 
						
						
							| 37 | 
							
								
							 | 
							eqid | 
							 |-  ( invg ` G ) = ( invg ` G )  | 
						
						
							| 38 | 
							
								36 17
							 | 
							syl | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> G e. Grp )  | 
						
						
							| 39 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> X e. ( Base ` G ) )  | 
						
						
							| 40 | 
							
								24 37 38 39
							 | 
							grpinvcld | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( invg ` G ) ` X ) e. ( Base ` G ) )  | 
						
						
							| 41 | 
							
								33
							 | 
							sselda | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> z e. ( Base ` G ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` G ) = ( +g ` G )  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` H ) = ( +g ` H )  | 
						
						
							| 44 | 
							
								24 42 43
							 | 
							ghmlin | 
							 |-  ( ( F e. ( G GrpHom H ) /\ ( ( invg ` G ) ` X ) e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) )  | 
						
						
							| 45 | 
							
								36 40 41 44
							 | 
							syl3anc | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) )  | 
						
						
							| 46 | 
							
								28
							 | 
							adantr | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F Fn ( Base ` G ) )  | 
						
						
							| 47 | 
							
								6 3
							 | 
							sseqtrdi | 
							 |-  ( ph -> N C_ ( `' F " { .0. } ) ) | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> N C_ ( `' F " { .0. } ) ) | 
						
						
							| 49 | 
							
								24
							 | 
							subgss | 
							 |-  ( N e. ( SubGrp ` G ) -> N C_ ( Base ` G ) )  | 
						
						
							| 50 | 
							
								7 29 49
							 | 
							3syl | 
							 |-  ( ph -> N C_ ( Base ` G ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> N C_ ( Base ` G ) )  | 
						
						
							| 52 | 
							
								
							 | 
							vex | 
							 |-  z e. _V  | 
						
						
							| 53 | 
							
								
							 | 
							elecg | 
							 |-  ( ( z e. _V /\ X e. ( Base ` G ) ) -> ( z e. [ X ] ( G ~QG N ) <-> X ( G ~QG N ) z ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							mpan | 
							 |-  ( X e. ( Base ` G ) -> ( z e. [ X ] ( G ~QG N ) <-> X ( G ~QG N ) z ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							biimpa | 
							 |-  ( ( X e. ( Base ` G ) /\ z e. [ X ] ( G ~QG N ) ) -> X ( G ~QG N ) z )  | 
						
						
							| 56 | 
							
								8 55
							 | 
							sylan | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> X ( G ~QG N ) z )  | 
						
						
							| 57 | 
							
								24 37 42 30
							 | 
							eqgval | 
							 |-  ( ( G e. Grp /\ N C_ ( Base ` G ) ) -> ( X ( G ~QG N ) z <-> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							biimpa | 
							 |-  ( ( ( G e. Grp /\ N C_ ( Base ` G ) ) /\ X ( G ~QG N ) z ) -> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							simp3d | 
							 |-  ( ( ( G e. Grp /\ N C_ ( Base ` G ) ) /\ X ( G ~QG N ) z ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N )  | 
						
						
							| 60 | 
							
								38 51 56 59
							 | 
							syl21anc | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. N )  | 
						
						
							| 61 | 
							
								48 60
							 | 
							sseldd | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) | 
						
						
							| 62 | 
							
								
							 | 
							fniniseg | 
							 |-  ( F Fn ( Base ` G ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) <-> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) ) | 
						
						
							| 63 | 
							
								62
							 | 
							biimpa | 
							 |-  ( ( F Fn ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) | 
						
						
							| 64 | 
							
								46 61 63
							 | 
							syl2anc | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							simprd | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. )  | 
						
						
							| 66 | 
							
								45 65
							 | 
							eqtr3d | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = .0. )  | 
						
						
							| 67 | 
							
								66
							 | 
							oveq2d | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) .0. ) )  | 
						
						
							| 68 | 
							
								
							 | 
							eqid | 
							 |-  ( invg ` H ) = ( invg ` H )  | 
						
						
							| 69 | 
							
								24 37 68
							 | 
							ghminv | 
							 |-  ( ( F e. ( G GrpHom H ) /\ X e. ( Base ` G ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) )  | 
						
						
							| 70 | 
							
								36 39 69
							 | 
							syl2anc | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							oveq1d | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							oveq2d | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ghmgrp2 | 
							 |-  ( F e. ( G GrpHom H ) -> H e. Grp )  | 
						
						
							| 74 | 
							
								36 73
							 | 
							syl | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> H e. Grp )  | 
						
						
							| 75 | 
							
								36 26
							 | 
							syl | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> F : ( Base ` G ) --> ( Base ` H ) )  | 
						
						
							| 76 | 
							
								75 39
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` X ) e. ( Base ` H ) )  | 
						
						
							| 77 | 
							
								75 41
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` z ) e. ( Base ` H ) )  | 
						
						
							| 78 | 
							
								25 43 68
							 | 
							grpasscan1 | 
							 |-  ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) )  | 
						
						
							| 79 | 
							
								74 76 77 78
							 | 
							syl3anc | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) )  | 
						
						
							| 80 | 
							
								72 79
							 | 
							eqtrd | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) )  | 
						
						
							| 81 | 
							
								25 43 1 74 76
							 | 
							grpridd | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) )  | 
						
						
							| 82 | 
							
								67 80 81
							 | 
							3eqtr3d | 
							 |-  ( ( ph /\ z e. [ X ] ( G ~QG N ) ) -> ( F ` z ) = ( F ` X ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							adantr | 
							 |-  ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = ( F ` X ) )  | 
						
						
							| 84 | 
							
								35 83
							 | 
							eqtr3d | 
							 |-  ( ( ( ph /\ z e. [ X ] ( G ~QG N ) ) /\ ( F ` z ) = y ) -> y = ( F ` X ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							r19.29an | 
							 |-  ( ( ph /\ E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y ) -> y = ( F ` X ) )  | 
						
						
							| 86 | 
							
								
							 | 
							fveqeq2 | 
							 |-  ( z = X -> ( ( F ` z ) = y <-> ( F ` X ) = y ) )  | 
						
						
							| 87 | 
							
								
							 | 
							ecref | 
							 |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ X e. ( Base ` G ) ) -> X e. [ X ] ( G ~QG N ) )  | 
						
						
							| 88 | 
							
								32 8 87
							 | 
							syl2anc | 
							 |-  ( ph -> X e. [ X ] ( G ~QG N ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							adantr | 
							 |-  ( ( ph /\ y = ( F ` X ) ) -> X e. [ X ] ( G ~QG N ) )  | 
						
						
							| 90 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ y = ( F ` X ) ) -> y = ( F ` X ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							eqcomd | 
							 |-  ( ( ph /\ y = ( F ` X ) ) -> ( F ` X ) = y )  | 
						
						
							| 92 | 
							
								86 89 91
							 | 
							rspcedvdw | 
							 |-  ( ( ph /\ y = ( F ` X ) ) -> E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y )  | 
						
						
							| 93 | 
							
								85 92
							 | 
							impbida | 
							 |-  ( ph -> ( E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y <-> y = ( F ` X ) ) )  | 
						
						
							| 94 | 
							
								
							 | 
							velsn | 
							 |-  ( y e. { ( F ` X ) } <-> y = ( F ` X ) ) | 
						
						
							| 95 | 
							
								93 94
							 | 
							bitr4di | 
							 |-  ( ph -> ( E. z e. [ X ] ( G ~QG N ) ( F ` z ) = y <-> y e. { ( F ` X ) } ) ) | 
						
						
							| 96 | 
							
								34 95
							 | 
							bitrd | 
							 |-  ( ph -> ( y e. ( F " [ X ] ( G ~QG N ) ) <-> y e. { ( F ` X ) } ) ) | 
						
						
							| 97 | 
							
								96
							 | 
							eqrdv | 
							 |-  ( ph -> ( F " [ X ] ( G ~QG N ) ) = { ( F ` X ) } ) | 
						
						
							| 98 | 
							
								97
							 | 
							unieqd | 
							 |-  ( ph -> U. ( F " [ X ] ( G ~QG N ) ) = U. { ( F ` X ) } ) | 
						
						
							| 99 | 
							
								
							 | 
							fvex | 
							 |-  ( F ` X ) e. _V  | 
						
						
							| 100 | 
							
								99
							 | 
							unisn | 
							 |-  U. { ( F ` X ) } = ( F ` X ) | 
						
						
							| 101 | 
							
								98 100
							 | 
							eqtrdi | 
							 |-  ( ph -> U. ( F " [ X ] ( G ~QG N ) ) = ( F ` X ) )  | 
						
						
							| 102 | 
							
								23 101
							 | 
							eqtrd | 
							 |-  ( ph -> ( J ` [ X ] ( G ~QG N ) ) = ( F ` X ) )  |