| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ghmqusnsg.0 | 
							 |-  .0. = ( 0g ` H )  | 
						
						
							| 2 | 
							
								
							 | 
							ghmqusnsg.f | 
							 |-  ( ph -> F e. ( G GrpHom H ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ghmqusnsg.k | 
							 |-  K = ( `' F " { .0. } ) | 
						
						
							| 4 | 
							
								
							 | 
							ghmqusnsg.q | 
							 |-  Q = ( G /s ( G ~QG N ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ghmqusnsg.j | 
							 |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ghmqusnsg.n | 
							 |-  ( ph -> N C_ K )  | 
						
						
							| 7 | 
							
								
							 | 
							ghmqusnsg.1 | 
							 |-  ( ph -> N e. ( NrmSGrp ` G ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ghmqusnsglem2.y | 
							 |-  ( ph -> Y e. ( Base ` Q ) )  | 
						
						
							| 9 | 
							
								4
							 | 
							a1i | 
							 |-  ( ph -> Q = ( G /s ( G ~QG N ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( Base ` G ) = ( Base ` G ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( G ~QG N ) e. _V )  | 
						
						
							| 12 | 
							
								
							 | 
							ghmgrp1 | 
							 |-  ( F e. ( G GrpHom H ) -> G e. Grp )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 14 | 
							
								9 10 11 13
							 | 
							qusbas | 
							 |-  ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							eleqtrrd | 
							 |-  ( ph -> Y e. ( ( Base ` G ) /. ( G ~QG N ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							elqsg | 
							 |-  ( Y e. ( Base ` Q ) -> ( Y e. ( ( Base ` G ) /. ( G ~QG N ) ) <-> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							biimpa | 
							 |-  ( ( Y e. ( Base ` Q ) /\ Y e. ( ( Base ` G ) /. ( G ~QG N ) ) ) -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) )  | 
						
						
							| 18 | 
							
								8 15 17
							 | 
							syl2anc | 
							 |-  ( ph -> E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) )  | 
						
						
							| 19 | 
							
								
							 | 
							nsgsubg | 
							 |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( G ~QG N ) = ( G ~QG N )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqger | 
							 |-  ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 23 | 
							
								7 19 22
							 | 
							3syl | 
							 |-  ( ph -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( G ~QG N ) Er ( Base ` G ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. ( Base ` G ) )  | 
						
						
							| 26 | 
							
								
							 | 
							ecref | 
							 |-  ( ( ( G ~QG N ) Er ( Base ` G ) /\ x e. ( Base ` G ) ) -> x e. [ x ] ( G ~QG N ) )  | 
						
						
							| 27 | 
							
								24 25 26
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. [ x ] ( G ~QG N ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> Y = [ x ] ( G ~QG N ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							eleqtrrd | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> x e. Y )  | 
						
						
							| 30 | 
							
								28
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( J ` [ x ] ( G ~QG N ) ) )  | 
						
						
							| 31 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> F e. ( G GrpHom H ) )  | 
						
						
							| 32 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N C_ K )  | 
						
						
							| 33 | 
							
								7
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> N e. ( NrmSGrp ` G ) )  | 
						
						
							| 34 | 
							
								1 31 3 4 5 32 33 25
							 | 
							ghmqusnsglem1 | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` [ x ] ( G ~QG N ) ) = ( F ` x ) )  | 
						
						
							| 35 | 
							
								30 34
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( J ` Y ) = ( F ` x ) )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							jca | 
							 |-  ( ( ( ph /\ x e. ( Base ` G ) ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							expl | 
							 |-  ( ph -> ( ( x e. ( Base ` G ) /\ Y = [ x ] ( G ~QG N ) ) -> ( x e. Y /\ ( J ` Y ) = ( F ` x ) ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							reximdv2 | 
							 |-  ( ph -> ( E. x e. ( Base ` G ) Y = [ x ] ( G ~QG N ) -> E. x e. Y ( J ` Y ) = ( F ` x ) ) )  | 
						
						
							| 39 | 
							
								18 38
							 | 
							mpd | 
							 |-  ( ph -> E. x e. Y ( J ` Y ) = ( F ` x ) )  |