Step |
Hyp |
Ref |
Expression |
1 |
|
ghmsub.b |
|- B = ( Base ` S ) |
2 |
|
ghmsub.m |
|- .- = ( -g ` S ) |
3 |
|
ghmsub.n |
|- N = ( -g ` T ) |
4 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
5 |
4
|
3ad2ant1 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> S e. Grp ) |
6 |
|
simp3 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> V e. B ) |
7 |
|
eqid |
|- ( invg ` S ) = ( invg ` S ) |
8 |
1 7
|
grpinvcl |
|- ( ( S e. Grp /\ V e. B ) -> ( ( invg ` S ) ` V ) e. B ) |
9 |
5 6 8
|
syl2anc |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( invg ` S ) ` V ) e. B ) |
10 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
11 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
12 |
1 10 11
|
ghmlin |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ ( ( invg ` S ) ` V ) e. B ) -> ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( F ` ( ( invg ` S ) ` V ) ) ) ) |
13 |
9 12
|
syld3an3 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( F ` ( ( invg ` S ) ` V ) ) ) ) |
14 |
|
eqid |
|- ( invg ` T ) = ( invg ` T ) |
15 |
1 7 14
|
ghminv |
|- ( ( F e. ( S GrpHom T ) /\ V e. B ) -> ( F ` ( ( invg ` S ) ` V ) ) = ( ( invg ` T ) ` ( F ` V ) ) ) |
16 |
15
|
3adant2 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( ( invg ` S ) ` V ) ) = ( ( invg ` T ) ` ( F ` V ) ) ) |
17 |
16
|
oveq2d |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) ( +g ` T ) ( F ` ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
18 |
13 17
|
eqtrd |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
19 |
1 10 7 2
|
grpsubval |
|- ( ( U e. B /\ V e. B ) -> ( U .- V ) = ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) |
20 |
19
|
fveq2d |
|- ( ( U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) ) |
21 |
20
|
3adant1 |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( F ` ( U ( +g ` S ) ( ( invg ` S ) ` V ) ) ) ) |
22 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
23 |
1 22
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : B --> ( Base ` T ) ) |
24 |
|
ffvelrn |
|- ( ( F : B --> ( Base ` T ) /\ U e. B ) -> ( F ` U ) e. ( Base ` T ) ) |
25 |
|
ffvelrn |
|- ( ( F : B --> ( Base ` T ) /\ V e. B ) -> ( F ` V ) e. ( Base ` T ) ) |
26 |
24 25
|
anim12dan |
|- ( ( F : B --> ( Base ` T ) /\ ( U e. B /\ V e. B ) ) -> ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) ) |
27 |
23 26
|
sylan |
|- ( ( F e. ( S GrpHom T ) /\ ( U e. B /\ V e. B ) ) -> ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) ) |
28 |
27
|
3impb |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) ) |
29 |
22 11 14 3
|
grpsubval |
|- ( ( ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) -> ( ( F ` U ) N ( F ` V ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
30 |
28 29
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) N ( F ` V ) ) = ( ( F ` U ) ( +g ` T ) ( ( invg ` T ) ` ( F ` V ) ) ) ) |
31 |
18 21 30
|
3eqtr4d |
|- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( ( F ` U ) N ( F ` V ) ) ) |