Step |
Hyp |
Ref |
Expression |
1 |
|
fco |
|- ( ( T : ran H --> ran K /\ S : ran G --> ran H ) -> ( T o. S ) : ran G --> ran K ) |
2 |
1
|
ancoms |
|- ( ( S : ran G --> ran H /\ T : ran H --> ran K ) -> ( T o. S ) : ran G --> ran K ) |
3 |
2
|
ad2ant2r |
|- ( ( ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) -> ( T o. S ) : ran G --> ran K ) |
4 |
3
|
a1i |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( ( ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) -> ( T o. S ) : ran G --> ran K ) ) |
5 |
|
ffvelrn |
|- ( ( S : ran G --> ran H /\ x e. ran G ) -> ( S ` x ) e. ran H ) |
6 |
|
ffvelrn |
|- ( ( S : ran G --> ran H /\ y e. ran G ) -> ( S ` y ) e. ran H ) |
7 |
5 6
|
anim12dan |
|- ( ( S : ran G --> ran H /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( S ` x ) e. ran H /\ ( S ` y ) e. ran H ) ) |
8 |
|
fveq2 |
|- ( u = ( S ` x ) -> ( T ` u ) = ( T ` ( S ` x ) ) ) |
9 |
8
|
oveq1d |
|- ( u = ( S ` x ) -> ( ( T ` u ) K ( T ` v ) ) = ( ( T ` ( S ` x ) ) K ( T ` v ) ) ) |
10 |
|
fvoveq1 |
|- ( u = ( S ` x ) -> ( T ` ( u H v ) ) = ( T ` ( ( S ` x ) H v ) ) ) |
11 |
9 10
|
eqeq12d |
|- ( u = ( S ` x ) -> ( ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) <-> ( ( T ` ( S ` x ) ) K ( T ` v ) ) = ( T ` ( ( S ` x ) H v ) ) ) ) |
12 |
|
fveq2 |
|- ( v = ( S ` y ) -> ( T ` v ) = ( T ` ( S ` y ) ) ) |
13 |
12
|
oveq2d |
|- ( v = ( S ` y ) -> ( ( T ` ( S ` x ) ) K ( T ` v ) ) = ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) ) |
14 |
|
oveq2 |
|- ( v = ( S ` y ) -> ( ( S ` x ) H v ) = ( ( S ` x ) H ( S ` y ) ) ) |
15 |
14
|
fveq2d |
|- ( v = ( S ` y ) -> ( T ` ( ( S ` x ) H v ) ) = ( T ` ( ( S ` x ) H ( S ` y ) ) ) ) |
16 |
13 15
|
eqeq12d |
|- ( v = ( S ` y ) -> ( ( ( T ` ( S ` x ) ) K ( T ` v ) ) = ( T ` ( ( S ` x ) H v ) ) <-> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( ( S ` x ) H ( S ` y ) ) ) ) ) |
17 |
11 16
|
rspc2va |
|- ( ( ( ( S ` x ) e. ran H /\ ( S ` y ) e. ran H ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) -> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( ( S ` x ) H ( S ` y ) ) ) ) |
18 |
7 17
|
sylan |
|- ( ( ( S : ran G --> ran H /\ ( x e. ran G /\ y e. ran G ) ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) -> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( ( S ` x ) H ( S ` y ) ) ) ) |
19 |
18
|
an32s |
|- ( ( ( S : ran G --> ran H /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( ( S ` x ) H ( S ` y ) ) ) ) |
20 |
19
|
adantllr |
|- ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( ( S ` x ) H ( S ` y ) ) ) ) |
21 |
20
|
adantllr |
|- ( ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( ( S ` x ) H ( S ` y ) ) ) ) |
22 |
|
fveq2 |
|- ( ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) -> ( T ` ( ( S ` x ) H ( S ` y ) ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
23 |
21 22
|
sylan9eq |
|- ( ( ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( x e. ran G /\ y e. ran G ) ) /\ ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) -> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
24 |
23
|
anasss |
|- ( ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( ( x e. ran G /\ y e. ran G ) /\ ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) ) -> ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
25 |
|
fvco3 |
|- ( ( S : ran G --> ran H /\ x e. ran G ) -> ( ( T o. S ) ` x ) = ( T ` ( S ` x ) ) ) |
26 |
25
|
ad2ant2r |
|- ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( T o. S ) ` x ) = ( T ` ( S ` x ) ) ) |
27 |
|
fvco3 |
|- ( ( S : ran G --> ran H /\ y e. ran G ) -> ( ( T o. S ) ` y ) = ( T ` ( S ` y ) ) ) |
28 |
27
|
ad2ant2rl |
|- ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( T o. S ) ` y ) = ( T ` ( S ` y ) ) ) |
29 |
26 28
|
oveq12d |
|- ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) ) |
30 |
29
|
adantlr |
|- ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) ) |
31 |
30
|
ad2ant2r |
|- ( ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( ( x e. ran G /\ y e. ran G ) /\ ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) ) -> ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T ` ( S ` x ) ) K ( T ` ( S ` y ) ) ) ) |
32 |
|
eqid |
|- ran G = ran G |
33 |
32
|
grpocl |
|- ( ( G e. GrpOp /\ x e. ran G /\ y e. ran G ) -> ( x G y ) e. ran G ) |
34 |
33
|
3expb |
|- ( ( G e. GrpOp /\ ( x e. ran G /\ y e. ran G ) ) -> ( x G y ) e. ran G ) |
35 |
|
fvco3 |
|- ( ( S : ran G --> ran H /\ ( x G y ) e. ran G ) -> ( ( T o. S ) ` ( x G y ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
36 |
35
|
adantlr |
|- ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ ( x G y ) e. ran G ) -> ( ( T o. S ) ` ( x G y ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
37 |
34 36
|
sylan2 |
|- ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ ( G e. GrpOp /\ ( x e. ran G /\ y e. ran G ) ) ) -> ( ( T o. S ) ` ( x G y ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
38 |
37
|
anassrs |
|- ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( T o. S ) ` ( x G y ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
39 |
38
|
ad2ant2r |
|- ( ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( ( x e. ran G /\ y e. ran G ) /\ ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) ) -> ( ( T o. S ) ` ( x G y ) ) = ( T ` ( S ` ( x G y ) ) ) ) |
40 |
24 31 39
|
3eqtr4d |
|- ( ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( ( x e. ran G /\ y e. ran G ) /\ ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) ) -> ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) |
41 |
40
|
expr |
|- ( ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) -> ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) |
42 |
41
|
ralimdvva |
|- ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ G e. GrpOp ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) -> ( A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) |
43 |
42
|
an32s |
|- ( ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) /\ G e. GrpOp ) -> ( A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) |
44 |
43
|
ex |
|- ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) -> ( G e. GrpOp -> ( A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) ) |
45 |
44
|
com23 |
|- ( ( ( S : ran G --> ran H /\ T : ran H --> ran K ) /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) -> ( A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) -> ( G e. GrpOp -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) ) |
46 |
45
|
anasss |
|- ( ( S : ran G --> ran H /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) -> ( A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) -> ( G e. GrpOp -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) ) |
47 |
46
|
imp |
|- ( ( ( S : ran G --> ran H /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) -> ( G e. GrpOp -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) |
48 |
47
|
an32s |
|- ( ( ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) -> ( G e. GrpOp -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) |
49 |
48
|
com12 |
|- ( G e. GrpOp -> ( ( ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) |
50 |
49
|
3ad2ant1 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( ( ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) -> A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) |
51 |
4 50
|
jcad |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( ( ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) -> ( ( T o. S ) : ran G --> ran K /\ A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) ) |
52 |
|
eqid |
|- ran H = ran H |
53 |
32 52
|
elghomOLD |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( S e. ( G GrpOpHom H ) <-> ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) ) ) |
54 |
53
|
3adant3 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( S e. ( G GrpOpHom H ) <-> ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) ) ) |
55 |
|
eqid |
|- ran K = ran K |
56 |
52 55
|
elghomOLD |
|- ( ( H e. GrpOp /\ K e. GrpOp ) -> ( T e. ( H GrpOpHom K ) <-> ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) ) |
57 |
56
|
3adant1 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( T e. ( H GrpOpHom K ) <-> ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) ) |
58 |
54 57
|
anbi12d |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( ( S e. ( G GrpOpHom H ) /\ T e. ( H GrpOpHom K ) ) <-> ( ( S : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( S ` x ) H ( S ` y ) ) = ( S ` ( x G y ) ) ) /\ ( T : ran H --> ran K /\ A. u e. ran H A. v e. ran H ( ( T ` u ) K ( T ` v ) ) = ( T ` ( u H v ) ) ) ) ) ) |
59 |
32 55
|
elghomOLD |
|- ( ( G e. GrpOp /\ K e. GrpOp ) -> ( ( T o. S ) e. ( G GrpOpHom K ) <-> ( ( T o. S ) : ran G --> ran K /\ A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) ) |
60 |
59
|
3adant2 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( ( T o. S ) e. ( G GrpOpHom K ) <-> ( ( T o. S ) : ran G --> ran K /\ A. x e. ran G A. y e. ran G ( ( ( T o. S ) ` x ) K ( ( T o. S ) ` y ) ) = ( ( T o. S ) ` ( x G y ) ) ) ) ) |
61 |
51 58 60
|
3imtr4d |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) -> ( ( S e. ( G GrpOpHom H ) /\ T e. ( H GrpOpHom K ) ) -> ( T o. S ) e. ( G GrpOpHom K ) ) ) |
62 |
61
|
imp |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ K e. GrpOp ) /\ ( S e. ( G GrpOpHom H ) /\ T e. ( H GrpOpHom K ) ) ) -> ( T o. S ) e. ( G GrpOpHom K ) ) |