Step |
Hyp |
Ref |
Expression |
1 |
|
ghomdiv.1 |
|- X = ran G |
2 |
|
ghomdiv.2 |
|- D = ( /g ` G ) |
3 |
|
ghomdiv.3 |
|- C = ( /g ` H ) |
4 |
|
simpl2 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> H e. GrpOp ) |
5 |
|
eqid |
|- ran H = ran H |
6 |
1 5
|
ghomf |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : X --> ran H ) |
7 |
6
|
ffvelrnda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ A e. X ) -> ( F ` A ) e. ran H ) |
8 |
7
|
adantrr |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) e. ran H ) |
9 |
6
|
ffvelrnda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ B e. X ) -> ( F ` B ) e. ran H ) |
10 |
9
|
adantrl |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` B ) e. ran H ) |
11 |
5 3
|
grponpcan |
|- ( ( H e. GrpOp /\ ( F ` A ) e. ran H /\ ( F ` B ) e. ran H ) -> ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) = ( F ` A ) ) |
12 |
4 8 10 11
|
syl3anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) = ( F ` A ) ) |
13 |
1 2
|
grponpcan |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |
14 |
13
|
3expb |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) G B ) = A ) |
15 |
14
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) G B ) = A ) |
16 |
15
|
fveq2d |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( F ` A ) ) |
17 |
1 2
|
grpodivcl |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) e. X ) |
18 |
17
|
3expb |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. X ) |
19 |
|
simprr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
20 |
18 19
|
jca |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. X /\ B e. X ) ) |
21 |
20
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. X /\ B e. X ) ) |
22 |
1
|
ghomlinOLD |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( ( A D B ) e. X /\ B e. X ) ) -> ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( F ` ( ( A D B ) G B ) ) ) |
23 |
22
|
eqcomd |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( ( A D B ) e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( ( F ` ( A D B ) ) H ( F ` B ) ) ) |
24 |
21 23
|
syldan |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( ( F ` ( A D B ) ) H ( F ` B ) ) ) |
25 |
12 16 24
|
3eqtr2rd |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) ) |
26 |
18
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. X ) |
27 |
6
|
ffvelrnda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A D B ) e. X ) -> ( F ` ( A D B ) ) e. ran H ) |
28 |
26 27
|
syldan |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A D B ) ) e. ran H ) |
29 |
5 3
|
grpodivcl |
|- ( ( H e. GrpOp /\ ( F ` A ) e. ran H /\ ( F ` B ) e. ran H ) -> ( ( F ` A ) C ( F ` B ) ) e. ran H ) |
30 |
4 8 10 29
|
syl3anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) C ( F ` B ) ) e. ran H ) |
31 |
5
|
grporcan |
|- ( ( H e. GrpOp /\ ( ( F ` ( A D B ) ) e. ran H /\ ( ( F ` A ) C ( F ` B ) ) e. ran H /\ ( F ` B ) e. ran H ) ) -> ( ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) <-> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) ) |
32 |
4 28 30 10 31
|
syl13anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) <-> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) ) |
33 |
25 32
|
mpbid |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) |