| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghomdiv.1 |
|- X = ran G |
| 2 |
|
ghomdiv.2 |
|- D = ( /g ` G ) |
| 3 |
|
ghomdiv.3 |
|- C = ( /g ` H ) |
| 4 |
|
simpl2 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> H e. GrpOp ) |
| 5 |
|
eqid |
|- ran H = ran H |
| 6 |
1 5
|
ghomf |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : X --> ran H ) |
| 7 |
6
|
ffvelcdmda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ A e. X ) -> ( F ` A ) e. ran H ) |
| 8 |
7
|
adantrr |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) e. ran H ) |
| 9 |
6
|
ffvelcdmda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ B e. X ) -> ( F ` B ) e. ran H ) |
| 10 |
9
|
adantrl |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` B ) e. ran H ) |
| 11 |
5 3
|
grponpcan |
|- ( ( H e. GrpOp /\ ( F ` A ) e. ran H /\ ( F ` B ) e. ran H ) -> ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) = ( F ` A ) ) |
| 12 |
4 8 10 11
|
syl3anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) = ( F ` A ) ) |
| 13 |
1 2
|
grponpcan |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( ( A D B ) G B ) = A ) |
| 14 |
13
|
3expb |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) G B ) = A ) |
| 15 |
14
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) G B ) = A ) |
| 16 |
15
|
fveq2d |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( F ` A ) ) |
| 17 |
1 2
|
grpodivcl |
|- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A D B ) e. X ) |
| 18 |
17
|
3expb |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. X ) |
| 19 |
|
simprr |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
| 20 |
18 19
|
jca |
|- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. X /\ B e. X ) ) |
| 21 |
20
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. X /\ B e. X ) ) |
| 22 |
1
|
ghomlinOLD |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( ( A D B ) e. X /\ B e. X ) ) -> ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( F ` ( ( A D B ) G B ) ) ) |
| 23 |
22
|
eqcomd |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( ( A D B ) e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( ( F ` ( A D B ) ) H ( F ` B ) ) ) |
| 24 |
21 23
|
syldan |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( ( A D B ) G B ) ) = ( ( F ` ( A D B ) ) H ( F ` B ) ) ) |
| 25 |
12 16 24
|
3eqtr2rd |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) ) |
| 26 |
18
|
3ad2antl1 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. X ) |
| 27 |
6
|
ffvelcdmda |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A D B ) e. X ) -> ( F ` ( A D B ) ) e. ran H ) |
| 28 |
26 27
|
syldan |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A D B ) ) e. ran H ) |
| 29 |
5 3
|
grpodivcl |
|- ( ( H e. GrpOp /\ ( F ` A ) e. ran H /\ ( F ` B ) e. ran H ) -> ( ( F ` A ) C ( F ` B ) ) e. ran H ) |
| 30 |
4 8 10 29
|
syl3anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) C ( F ` B ) ) e. ran H ) |
| 31 |
5
|
grporcan |
|- ( ( H e. GrpOp /\ ( ( F ` ( A D B ) ) e. ran H /\ ( ( F ` A ) C ( F ` B ) ) e. ran H /\ ( F ` B ) e. ran H ) ) -> ( ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) <-> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) ) |
| 32 |
4 28 30 10 31
|
syl13anc |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` ( A D B ) ) H ( F ` B ) ) = ( ( ( F ` A ) C ( F ` B ) ) H ( F ` B ) ) <-> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) ) |
| 33 |
25 32
|
mpbid |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A D B ) ) = ( ( F ` A ) C ( F ` B ) ) ) |