Description: Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghomf.1 | |- X = ran G |
|
ghomf.2 | |- W = ran H |
||
Assertion | ghomf | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : X --> W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghomf.1 | |- X = ran G |
|
2 | ghomf.2 | |- W = ran H |
|
3 | 1 2 | elghomOLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : X --> W /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
4 | 3 | simprbda | |- ( ( ( G e. GrpOp /\ H e. GrpOp ) /\ F e. ( G GrpOpHom H ) ) -> F : X --> W ) |
5 | 4 | 3impa | |- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : X --> W ) |