Step |
Hyp |
Ref |
Expression |
1 |
|
ghomidOLD.1 |
|- U = ( GId ` G ) |
2 |
|
ghomidOLD.2 |
|- T = ( GId ` H ) |
3 |
|
eqid |
|- ran G = ran G |
4 |
3 1
|
grpoidcl |
|- ( G e. GrpOp -> U e. ran G ) |
5 |
4
|
3ad2ant1 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> U e. ran G ) |
6 |
5 5
|
jca |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( U e. ran G /\ U e. ran G ) ) |
7 |
3
|
ghomlinOLD |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( U e. ran G /\ U e. ran G ) ) -> ( ( F ` U ) H ( F ` U ) ) = ( F ` ( U G U ) ) ) |
8 |
6 7
|
mpdan |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) H ( F ` U ) ) = ( F ` ( U G U ) ) ) |
9 |
3 1
|
grpolid |
|- ( ( G e. GrpOp /\ U e. ran G ) -> ( U G U ) = U ) |
10 |
4 9
|
mpdan |
|- ( G e. GrpOp -> ( U G U ) = U ) |
11 |
10
|
fveq2d |
|- ( G e. GrpOp -> ( F ` ( U G U ) ) = ( F ` U ) ) |
12 |
11
|
3ad2ant1 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` ( U G U ) ) = ( F ` U ) ) |
13 |
8 12
|
eqtrd |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) |
14 |
|
eqid |
|- ran H = ran H |
15 |
3 14
|
elghomOLD |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
16 |
15
|
biimp3a |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
17 |
16
|
simpld |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> F : ran G --> ran H ) |
18 |
17 5
|
ffvelrnd |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` U ) e. ran H ) |
19 |
14 2
|
grpoid |
|- ( ( H e. GrpOp /\ ( F ` U ) e. ran H ) -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) |
20 |
19
|
ex |
|- ( H e. GrpOp -> ( ( F ` U ) e. ran H -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) ) |
21 |
20
|
3ad2ant2 |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) e. ran H -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) ) |
22 |
18 21
|
mpd |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( ( F ` U ) = T <-> ( ( F ` U ) H ( F ` U ) ) = ( F ` U ) ) ) |
23 |
13 22
|
mpbird |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F ` U ) = T ) |