Step |
Hyp |
Ref |
Expression |
1 |
|
ghomlinOLD.1 |
|- X = ran G |
2 |
|
eqid |
|- ran H = ran H |
3 |
1 2
|
elghomOLD |
|- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : X --> ran H /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
4 |
3
|
biimp3a |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> ( F : X --> ran H /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
5 |
4
|
simprd |
|- ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) -> A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) |
6 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
7 |
6
|
oveq1d |
|- ( x = A -> ( ( F ` x ) H ( F ` y ) ) = ( ( F ` A ) H ( F ` y ) ) ) |
8 |
|
oveq1 |
|- ( x = A -> ( x G y ) = ( A G y ) ) |
9 |
8
|
fveq2d |
|- ( x = A -> ( F ` ( x G y ) ) = ( F ` ( A G y ) ) ) |
10 |
7 9
|
eqeq12d |
|- ( x = A -> ( ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) <-> ( ( F ` A ) H ( F ` y ) ) = ( F ` ( A G y ) ) ) ) |
11 |
|
fveq2 |
|- ( y = B -> ( F ` y ) = ( F ` B ) ) |
12 |
11
|
oveq2d |
|- ( y = B -> ( ( F ` A ) H ( F ` y ) ) = ( ( F ` A ) H ( F ` B ) ) ) |
13 |
|
oveq2 |
|- ( y = B -> ( A G y ) = ( A G B ) ) |
14 |
13
|
fveq2d |
|- ( y = B -> ( F ` ( A G y ) ) = ( F ` ( A G B ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( y = B -> ( ( ( F ` A ) H ( F ` y ) ) = ( F ` ( A G y ) ) <-> ( ( F ` A ) H ( F ` B ) ) = ( F ` ( A G B ) ) ) ) |
16 |
10 15
|
rspc2v |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) -> ( ( F ` A ) H ( F ` B ) ) = ( F ` ( A G B ) ) ) ) |
17 |
5 16
|
mpan9 |
|- ( ( ( G e. GrpOp /\ H e. GrpOp /\ F e. ( G GrpOpHom H ) ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) H ( F ` B ) ) = ( F ` ( A G B ) ) ) |