Step |
Hyp |
Ref |
Expression |
1 |
|
brgic |
|- ( G ~=g H <-> ( G GrpIso H ) =/= (/) ) |
2 |
|
n0 |
|- ( ( G GrpIso H ) =/= (/) <-> E. f f e. ( G GrpIso H ) ) |
3 |
|
gimghm |
|- ( f e. ( G GrpIso H ) -> f e. ( G GrpHom H ) ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
6 |
4 5
|
gimf1o |
|- ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -1-1-onto-> ( Base ` H ) ) |
7 |
|
f1ofo |
|- ( f : ( Base ` G ) -1-1-onto-> ( Base ` H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) |
8 |
6 7
|
syl |
|- ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) |
9 |
4 5
|
ghmcyg |
|- ( ( f e. ( G GrpHom H ) /\ f : ( Base ` G ) -onto-> ( Base ` H ) ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
10 |
3 8 9
|
syl2anc |
|- ( f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
11 |
10
|
exlimiv |
|- ( E. f f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) |
12 |
2 11
|
sylbi |
|- ( ( G GrpIso H ) =/= (/) -> ( G e. CycGrp -> H e. CycGrp ) ) |
13 |
1 12
|
sylbi |
|- ( G ~=g H -> ( G e. CycGrp -> H e. CycGrp ) ) |