| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brgic |  |-  ( G ~=g H <-> ( G GrpIso H ) =/= (/) ) | 
						
							| 2 |  | n0 |  |-  ( ( G GrpIso H ) =/= (/) <-> E. f f e. ( G GrpIso H ) ) | 
						
							| 3 |  | gimghm |  |-  ( f e. ( G GrpIso H ) -> f e. ( G GrpHom H ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 5 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 6 | 4 5 | gimf1o |  |-  ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -1-1-onto-> ( Base ` H ) ) | 
						
							| 7 |  | f1ofo |  |-  ( f : ( Base ` G ) -1-1-onto-> ( Base ` H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( f e. ( G GrpIso H ) -> f : ( Base ` G ) -onto-> ( Base ` H ) ) | 
						
							| 9 | 4 5 | ghmcyg |  |-  ( ( f e. ( G GrpHom H ) /\ f : ( Base ` G ) -onto-> ( Base ` H ) ) -> ( G e. CycGrp -> H e. CycGrp ) ) | 
						
							| 10 | 3 8 9 | syl2anc |  |-  ( f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) | 
						
							| 11 | 10 | exlimiv |  |-  ( E. f f e. ( G GrpIso H ) -> ( G e. CycGrp -> H e. CycGrp ) ) | 
						
							| 12 | 2 11 | sylbi |  |-  ( ( G GrpIso H ) =/= (/) -> ( G e. CycGrp -> H e. CycGrp ) ) | 
						
							| 13 | 1 12 | sylbi |  |-  ( G ~=g H -> ( G e. CycGrp -> H e. CycGrp ) ) |