| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gicen.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | gicen.c |  |-  C = ( Base ` S ) | 
						
							| 3 |  | brgic |  |-  ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) | 
						
							| 4 |  | n0 |  |-  ( ( R GrpIso S ) =/= (/) <-> E. f f e. ( R GrpIso S ) ) | 
						
							| 5 | 1 2 | gimf1o |  |-  ( f e. ( R GrpIso S ) -> f : B -1-1-onto-> C ) | 
						
							| 6 | 1 | fvexi |  |-  B e. _V | 
						
							| 7 | 6 | f1oen |  |-  ( f : B -1-1-onto-> C -> B ~~ C ) | 
						
							| 8 | 5 7 | syl |  |-  ( f e. ( R GrpIso S ) -> B ~~ C ) | 
						
							| 9 | 8 | exlimiv |  |-  ( E. f f e. ( R GrpIso S ) -> B ~~ C ) | 
						
							| 10 | 4 9 | sylbi |  |-  ( ( R GrpIso S ) =/= (/) -> B ~~ C ) | 
						
							| 11 | 3 10 | sylbi |  |-  ( R ~=g S -> B ~~ C ) |