| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-gic |  |-  ~=g = ( `' GrpIso " ( _V \ 1o ) ) | 
						
							| 2 |  | cnvimass |  |-  ( `' GrpIso " ( _V \ 1o ) ) C_ dom GrpIso | 
						
							| 3 |  | gimfn |  |-  GrpIso Fn ( Grp X. Grp ) | 
						
							| 4 | 3 | fndmi |  |-  dom GrpIso = ( Grp X. Grp ) | 
						
							| 5 | 2 4 | sseqtri |  |-  ( `' GrpIso " ( _V \ 1o ) ) C_ ( Grp X. Grp ) | 
						
							| 6 | 1 5 | eqsstri |  |-  ~=g C_ ( Grp X. Grp ) | 
						
							| 7 |  | relxp |  |-  Rel ( Grp X. Grp ) | 
						
							| 8 |  | relss |  |-  ( ~=g C_ ( Grp X. Grp ) -> ( Rel ( Grp X. Grp ) -> Rel ~=g ) ) | 
						
							| 9 | 6 7 8 | mp2 |  |-  Rel ~=g | 
						
							| 10 |  | gicsym |  |-  ( x ~=g y -> y ~=g x ) | 
						
							| 11 |  | gictr |  |-  ( ( x ~=g y /\ y ~=g z ) -> x ~=g z ) | 
						
							| 12 |  | gicref |  |-  ( x e. Grp -> x ~=g x ) | 
						
							| 13 |  | giclcl |  |-  ( x ~=g x -> x e. Grp ) | 
						
							| 14 | 12 13 | impbii |  |-  ( x e. Grp <-> x ~=g x ) | 
						
							| 15 | 9 10 11 14 | iseri |  |-  ~=g Er Grp |