Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
2 |
1
|
idghm |
|- ( R e. Grp -> ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) ) |
3 |
|
cnvresid |
|- `' ( _I |` ( Base ` R ) ) = ( _I |` ( Base ` R ) ) |
4 |
3 2
|
eqeltrid |
|- ( R e. Grp -> `' ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) ) |
5 |
|
isgim2 |
|- ( ( _I |` ( Base ` R ) ) e. ( R GrpIso R ) <-> ( ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) /\ `' ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) ) ) |
6 |
2 4 5
|
sylanbrc |
|- ( R e. Grp -> ( _I |` ( Base ` R ) ) e. ( R GrpIso R ) ) |
7 |
|
brgici |
|- ( ( _I |` ( Base ` R ) ) e. ( R GrpIso R ) -> R ~=g R ) |
8 |
6 7
|
syl |
|- ( R e. Grp -> R ~=g R ) |