| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brgic |  |-  ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) | 
						
							| 2 |  | n0 |  |-  ( ( R GrpIso S ) =/= (/) <-> E. a a e. ( R GrpIso S ) ) | 
						
							| 3 | 1 2 | bitri |  |-  ( R ~=g S <-> E. a a e. ( R GrpIso S ) ) | 
						
							| 4 |  | fvexd |  |-  ( a e. ( R GrpIso S ) -> ( SubGrp ` R ) e. _V ) | 
						
							| 5 |  | fvexd |  |-  ( a e. ( R GrpIso S ) -> ( SubGrp ` S ) e. _V ) | 
						
							| 6 |  | vex |  |-  a e. _V | 
						
							| 7 | 6 | imaex |  |-  ( a " b ) e. _V | 
						
							| 8 | 7 | 2a1i |  |-  ( a e. ( R GrpIso S ) -> ( b e. ( SubGrp ` R ) -> ( a " b ) e. _V ) ) | 
						
							| 9 | 6 | cnvex |  |-  `' a e. _V | 
						
							| 10 | 9 | imaex |  |-  ( `' a " c ) e. _V | 
						
							| 11 | 10 | 2a1i |  |-  ( a e. ( R GrpIso S ) -> ( c e. ( SubGrp ` S ) -> ( `' a " c ) e. _V ) ) | 
						
							| 12 |  | gimghm |  |-  ( a e. ( R GrpIso S ) -> a e. ( R GrpHom S ) ) | 
						
							| 13 |  | ghmima |  |-  ( ( a e. ( R GrpHom S ) /\ b e. ( SubGrp ` R ) ) -> ( a " b ) e. ( SubGrp ` S ) ) | 
						
							| 14 | 12 13 | sylan |  |-  ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( a " b ) e. ( SubGrp ` S ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 16 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 17 | 15 16 | gimf1o |  |-  ( a e. ( R GrpIso S ) -> a : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) | 
						
							| 18 |  | f1of1 |  |-  ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> a : ( Base ` R ) -1-1-> ( Base ` S ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( a e. ( R GrpIso S ) -> a : ( Base ` R ) -1-1-> ( Base ` S ) ) | 
						
							| 20 | 15 | subgss |  |-  ( b e. ( SubGrp ` R ) -> b C_ ( Base ` R ) ) | 
						
							| 21 |  | f1imacnv |  |-  ( ( a : ( Base ` R ) -1-1-> ( Base ` S ) /\ b C_ ( Base ` R ) ) -> ( `' a " ( a " b ) ) = b ) | 
						
							| 22 | 19 20 21 | syl2an |  |-  ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( `' a " ( a " b ) ) = b ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> b = ( `' a " ( a " b ) ) ) | 
						
							| 24 | 14 23 | jca |  |-  ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( ( a " b ) e. ( SubGrp ` S ) /\ b = ( `' a " ( a " b ) ) ) ) | 
						
							| 25 |  | eleq1 |  |-  ( c = ( a " b ) -> ( c e. ( SubGrp ` S ) <-> ( a " b ) e. ( SubGrp ` S ) ) ) | 
						
							| 26 |  | imaeq2 |  |-  ( c = ( a " b ) -> ( `' a " c ) = ( `' a " ( a " b ) ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( c = ( a " b ) -> ( b = ( `' a " c ) <-> b = ( `' a " ( a " b ) ) ) ) | 
						
							| 28 | 25 27 | anbi12d |  |-  ( c = ( a " b ) -> ( ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) <-> ( ( a " b ) e. ( SubGrp ` S ) /\ b = ( `' a " ( a " b ) ) ) ) ) | 
						
							| 29 | 24 28 | syl5ibrcom |  |-  ( ( a e. ( R GrpIso S ) /\ b e. ( SubGrp ` R ) ) -> ( c = ( a " b ) -> ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) ) | 
						
							| 30 | 29 | impr |  |-  ( ( a e. ( R GrpIso S ) /\ ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) ) -> ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) | 
						
							| 31 |  | ghmpreima |  |-  ( ( a e. ( R GrpHom S ) /\ c e. ( SubGrp ` S ) ) -> ( `' a " c ) e. ( SubGrp ` R ) ) | 
						
							| 32 | 12 31 | sylan |  |-  ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( `' a " c ) e. ( SubGrp ` R ) ) | 
						
							| 33 |  | f1ofo |  |-  ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> a : ( Base ` R ) -onto-> ( Base ` S ) ) | 
						
							| 34 | 17 33 | syl |  |-  ( a e. ( R GrpIso S ) -> a : ( Base ` R ) -onto-> ( Base ` S ) ) | 
						
							| 35 | 16 | subgss |  |-  ( c e. ( SubGrp ` S ) -> c C_ ( Base ` S ) ) | 
						
							| 36 |  | foimacnv |  |-  ( ( a : ( Base ` R ) -onto-> ( Base ` S ) /\ c C_ ( Base ` S ) ) -> ( a " ( `' a " c ) ) = c ) | 
						
							| 37 | 34 35 36 | syl2an |  |-  ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( a " ( `' a " c ) ) = c ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> c = ( a " ( `' a " c ) ) ) | 
						
							| 39 | 32 38 | jca |  |-  ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( ( `' a " c ) e. ( SubGrp ` R ) /\ c = ( a " ( `' a " c ) ) ) ) | 
						
							| 40 |  | eleq1 |  |-  ( b = ( `' a " c ) -> ( b e. ( SubGrp ` R ) <-> ( `' a " c ) e. ( SubGrp ` R ) ) ) | 
						
							| 41 |  | imaeq2 |  |-  ( b = ( `' a " c ) -> ( a " b ) = ( a " ( `' a " c ) ) ) | 
						
							| 42 | 41 | eqeq2d |  |-  ( b = ( `' a " c ) -> ( c = ( a " b ) <-> c = ( a " ( `' a " c ) ) ) ) | 
						
							| 43 | 40 42 | anbi12d |  |-  ( b = ( `' a " c ) -> ( ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) <-> ( ( `' a " c ) e. ( SubGrp ` R ) /\ c = ( a " ( `' a " c ) ) ) ) ) | 
						
							| 44 | 39 43 | syl5ibrcom |  |-  ( ( a e. ( R GrpIso S ) /\ c e. ( SubGrp ` S ) ) -> ( b = ( `' a " c ) -> ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) ) ) | 
						
							| 45 | 44 | impr |  |-  ( ( a e. ( R GrpIso S ) /\ ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) -> ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) ) | 
						
							| 46 | 30 45 | impbida |  |-  ( a e. ( R GrpIso S ) -> ( ( b e. ( SubGrp ` R ) /\ c = ( a " b ) ) <-> ( c e. ( SubGrp ` S ) /\ b = ( `' a " c ) ) ) ) | 
						
							| 47 | 4 5 8 11 46 | en2d |  |-  ( a e. ( R GrpIso S ) -> ( SubGrp ` R ) ~~ ( SubGrp ` S ) ) | 
						
							| 48 | 47 | exlimiv |  |-  ( E. a a e. ( R GrpIso S ) -> ( SubGrp ` R ) ~~ ( SubGrp ` S ) ) | 
						
							| 49 | 3 48 | sylbi |  |-  ( R ~=g S -> ( SubGrp ` R ) ~~ ( SubGrp ` S ) ) |